

IADS Real Time
Data Source Interface

January 2016, v2.0

SYMVIONICS Document SSD-IADS-021

© 1996-2019 SYMVIONICS, Inc.

All rights reserved.

Table of Contents

1.0 Introduction ... 3

2.0 Data Source Specification... 4

2.1 Data Source Architecture .. 4

2.2 IADS Server Setup ... 6

2.3 System Parameters .. 7

3.0 Example Data Source Program ... 9

3.1 IADS Data Source Project ... 9

3.2 Running the IADS Data Source Program.. 11

4.0 IADS Real Time Station ... 12

4.1 Running RT Station .. 12

4.2 Creating Displays in IADS .. 16

5.0 Troubleshooting .. 21

5.1 Validating Time ... 21

APPENDIX A .. 23

IADS Interface Message Format 1 .. 23

IADS Interface Message Format 2 .. 24

APPENDIX B .. 25

Sample Parameter Definition File ... 25

APPENDIX C .. 26

IADS 32-bit Decom Status Parameter Format .. 26

1.0 Introduction

The purpose of this document is to describe how to develop an interface that feeds

data to IADS along with how to test and troubleshoot the development effort. This

document is part of an overall data source development kit that includes an example data

source program with source code.

Section 2 of this document provides a specification describing the overall data

source architecture including connection, protocol and format requirements along with

rules on providing data. Section 3 describes an example data source program that is

available as part of the development kit which can be useful for further understanding and

guidance. Section 4 includes instructions on how to use an IADS product named RT

Station to check out the interconnections between the data source and IADS Server along

with viewing the data on an IADS Client display. Section 5 gives tips on troubleshooting

potential problems that may arise during development and checkout.

2.0 Data Source Specification

2.1 Data Source Architecture

The real time data source architecture is one that provides data packets to the

IADS Server at as close to fixed rates as possible. Since IADS is a data driven

architecture the more consistent the rate the packets are fed to the IADS Server the better

to provide a smooth data flow. The recommended data packet frequency is 10-20

milliseconds. To compensate for network and/or other system level delays a capability to

buffer up data packets is recommended at the data source to provide some flexibility for

potential data delivery delays in order to prevent data overflow/loss between the data

source and the IADS Server. This buffering architecture has the advantage of allowing

for some “rubber-banding” in the downstream processing without losing data at the data

source.

2.1.1 Data Source Socket Interface

To communicate properly with the IADS Server, the data source must be set up as

a TCP/IP socket server. The data source will first perform a handshake that specifies the

byte order and format of the packets then will begin sending data packets. This protocol

is a one way communication going from data source to IADS Server. After the initial

handshake the data source will continually send data packets (preferably in a blocked

write mode) to the IADS Server. These messages are recommended to be sent at a

frequency of 10-20 milliseconds. The message size can vary between data packets so in

order to maintain the packet rate you may need to send packets containing only time

parameter samples in cases where data parameter rates are low.

Typical usage of the data source is to keep the source running and allow the IADS

Server to perform multiple connections over an extended period of time. In order to

accomplish this functionality another feature of the data source should be to allow

reconnections from the IADS Server without having to restart the data source application.

2.1.2 Handshake Protocol

Upon initial connection to the data source, the IADS Server expects to receive

two handshake messages describing aspects of the data source environment. First a one-

byte message is expected that defines the byte order of all subsequent messages. The

codes to specify the byte order are as follows:

Little Endian = 1

Big Endian = 2

Secondly a four-byte message is expected defining the code of the format of all

subsequent data packets. The data packets must not vary from this specified format and

must also conform to formatting specifications as defined in the next two sections. There

are currently two supported packet formats with the following codes:

Tag/value pair format = 100

Tag/size/value format = 101

Note: Tag/size/value format only supports Little Endian byte order.

Section 2.1.4 will provide more detail on packet format content and field

definitions.

2.1.3 Data Packet Header Format

Each data packet from the data source has a header that contains various record

and status information followed by a body that contains tag/value pairs. Each header

contains 8 32-bit fields (32 bytes) described as follows:

Field name Description

Field 0 Message Size Total size of header and body (Field 0 non-inclusive)

Field 1 Sequence Number Message sequence counter

Field 2 Packets Sent Total number of data packets sent to IADS Server

Field 3 Data loss/Overflow Total number of data loss/overflow occurrences

Field 4-7 Dummy Currently unused fields

Except for field 0 (Message Size) and field 1 (Sequence Number) all other fields

are essentially unused or optional fields used to describe additional data source status.

Calculating the Message Size field consists of adding the remaining portion of the

header (28 bytes) to the entire size of the packet body. For example if the packet body

size is 1200 bytes then the Message Size field should contain the value 1228.

See Appendix A for a block diagram of the message format including the header.

2.1.4 Data Packet Body Format

Currently there are two supported data packet body formats.

The first packet body format (code 100) contains sets of tag/value pairs consisting

of 16-bit tag fields and 32-bit value fields. A tag is an integer that uniquely identifies a

particular parameter. The values are the data associated with each tag instance. The

format of a single tag/value pair in 32-bit form is as follows:

Tag1 (16-bit)

Tag2 (16-bit)

Value1 (32-bit)

Value2 (32-bit)

The body consists of (n) consecutive sets of these tag/value pairs. Therefore the

size of each message will consist of 28 bytes of header (message size field is non-

inclusive) plus (n) times 12 bytes of body. This also means there are a total of (n) times 2

parameters per message.

The second supported packet body format (code 101) contains sets of

tag/size/value sets consisting of 32-bit fields containing the integer parameter identifier

followed by the data unit size in bytes followed by the data value. The format of a single

tag/size/value set is as follows:

Tag (32-bit)

Size (32-bit)

Value (number of bytes specified in Size field)

The body consists of (n) consecutive sets of these tag/size/value sets. Therefore

the size of each message will consist of 28 bytes of header (message size field is non-

inclusive) plus (n) times (8 + size) bytes of body where size is the size in bytes of the

data associated with each particular tag. Currently this interface does not support variable

size data for a particular tag. This also means there are a total of (n) parameters per

message.

See Appendix A for a block diagram of the supported message formats.

2.1.5 Packet Content Notes

A primary requirement for parameters contained within the stream of data packets

is that the order of the data samples coming out of the data source be chronological (time

sequential) for a particular parameter. Each periodic parameter (i.e. parameter with

sample rate greater than 0) is expected to have a consistent interval (with allowances for

some minor rubber-banding) in the data stream correlating to the sample rate specified in

the parameter definition file. No pre-alignment of data across parameters is assumed (i.e.

no manipulation of the data is required prior to entering IADS).

Time parameters are required to be part of the data stream. Ideally the sample rate

of the time parameters should be greater than or equal to the highest sample rate of the

data parameters. The time words should be interleaved in the data packets such that each

sample of a particular data parameter has a unique time stamp. The following is an

example that illustrates a valid time/data sequence inside a packet where P1 and P2 are

samples from 2 different data parameters and P2 is half the rate of P1. T1 and T2 are the

upper and lower words respectively from the time parameter (see Section 2.3.1 for more

detail on time word format):

T1/T2/P1/T1/T2/P1/P2/T1/T2/P1/T1/T2/P1/P2/T1/T2/P1/T1/T2/P1/P2…

Low sample rates on time parameters can have side effects. Since IADS is

basically a data driven system the update rates of the IADS Client displays can be

affected by the sample rate of the time parameters. Time parameter rates lower than about

50 samples per second may show a ‘stuttering’ behavior on the client displays. See

Section 2.3.1 for more detail on time parameters.

2.2 IADS Server Setup

In order for the IADS Server to operate properly a parameter definition file must

exist that provides information on how to process the packet contents. The parameter

definition file is also known as the PRN file and typically has a .prn extension on the file

name but is not required. The details of that file are described as follows:

2.2.1 Parameter Definition File

The IADS Server requires a file to exist prior to system startup that defines

information on parameters expected to be received in the data stream from the data

source. The set of information includes tag id, parameter name, sample rate and data

format (e.g. integer, float, unsigned integer, etc.) See Appendix B for typical entries in

the file.

The first field corresponds to an integer tag identifier to uniquely associate a value

with a parameter in the data stream. The second field represents the name of the

parameter as specified in the IADS configuration file ParameterDefaults table. The third

field corresponds to the expected sample rate in samples per second that the parameter

will be received from the data source. The sample rates can be integer or floating point.

Sample rates of 0 or 0.0 denote aperiodic data. The next field identifies the format

representation of the value coming from the data source. The format codes currently

supported are as follows:

 Data Format Description Code Value

32-bit integer Integer 0

32-bit unsigned integer Discrete 1

32-bit single precision floating point Float 2

64-bit integer Long 3

64-bit unsigned integer Ulong 4

64-bit double precision floating point Double 5

Binary objects Blob 7

BLOB data can be identified as binary data of any size aligned on byte

boundaries.

There is also extended information that can be added to parameter definition

entries. The general format of these extended entries is as follows:

Key = Value

Key is a reserved keyword that is recognized by the IADS Server to represent a

specific piece of parameter information and Value is the value associated with the

keyword. Currently there are two supported extended information keywords:

“DataSize=n” and “SystemParamType = type” the latter of which is described further in

Section 4.

Currently the IADS Server does not support variable sized samples within a single

tag.

See Appendix B for an example Parameter Definition file

2.3 System Parameters

Following are parameters needed for the IADS Server to fully operate properly.

These are system-based parameters used for processing other data parameters or for

presenting status information. There are two types of system parameters, time parameters

and decom status parameters. Time parameters are required to be included as part of the

overall parameter set but decom status parameters are optional. The following

subsections describe these parameter types:

2.3.1 Time Parameters

Time is represented as a 64-bit word in units of nanoseconds consisting of the

time offset from the beginning of the year. As an example if IRIG time is set at

001:01:00:00.000 then the 64-bit time value would be 3600000000000 (i.e. one hour

offset from the beginning of the year). The protocol required to transfer time via the data

packets consists of splitting the time word into two 32-bit words. The upper 32-bit word

must be identified in the parameter definitions file by appending the SystemParamType =

MajorTime to the entry of the parameter to be used as the high order time word. The

lower 32-bit word must be identified by appending SystemParamType = MinorTime to

the parameter definition file entry of the parameter to be used as the low order time word.

The sequence of the time words in the packet should be the upper time word followed by

the lower time word. See the data flow example in section 2.1.5 where the upper word is

represented as T1 and the lower word is represented as T2.

Ideally the sample rate of the time parameters should be greater than or equal to

the highest sample rate of the data parameters. The time words should be interleaved in

the data packets such that each sample of a particular data parameter has a unique time

stamp.

Low sample rates on time parameters can have side effects. Since IADS is

basically a data driven system the IADS Client display update rates can be affected by the

sample rate of the time parameters. Time parameter rates lower than about 50 samples

per second may show a ‘stuttering’ behavior on the client displays.

2.3.2 Decom Status Parameters

Decom Status is another system parameter used by the IADS Server to obtain data

stream information such as sync loss. This parameter is identified in the parameter

definition file by using the extended information property “DecomStatus” (see Appendix

B for the data format of this parameter). The “DecomStatus” parameter will be defined in

the IADS Client display using the default naming convention of _IadsDecomStatus(n)_.

Where (n) is the stream number for multiple PCM stream setups. These parameters are

automatically created in the IADS Configuration file upon startup and can be used by the

IADS Client along with pre-defined derived functions for display purposes. These

parameters are also used for informational purposes by the IADS Operator Console in a

real time environment. Even though these parameters are not required in the stream,

definition in the parameter definition file (see Section 3.1) is recommended. The

currently supported decom status format is shown in Appendix C.

The following is a parameter definition file excerpt showing both the Time and

Decom Status system parameter definitions.

1 DecomStatus 50.0 2 SystemParamType = DecomStatus

2 Param1 50.0 2

3 Param2 50.0 2

4 Param3 50.0 2

5 Param4 50.0 2

6 TimeUpperWord 1000.0 1 SystemParamType = MajorTime

7 TimeLowerWord 1000.0 1 SystemParamType = MinorTime

3.0 Example Data Source Program

The purpose of the example IADS Data Source program is to provide a better

understanding and guidance on the specifics of developing an interface to communicate

with the IADS Server. The program initially waits for an IADS Server to connect and

then sends data packets containing simulated data. The program also allows for

reconnections to the IADS Server without re-launching the application which is a useful

feature of the data source.

The IADS Data Source program is available either by requesting the IADS Data

Source Developers Kit from SYMVIONICS, Inc. or downloading from the Programming

Examples page on the SYMVIONICS web site

(http://iads.SYMVIONICS.com/programs.html) by selecting the IADS Data Source

option under the section named Data Processing Examples.

3.1 IADS Data Source Project

The IADS Data Source program is a Microsoft Visual Studio 2005 project written

in C++ that contains three example programs demonstrating how to output the different

packet formats available along with various methods of inserting data inside the packets.

The project also contains three parameter definition files that describe the parameter

specifications for each example. For more background information on packet setup and

communication protocol along with details on parameter definition files see Section 2.0

of this document.

In order to specify which example program to apply, open up the project in Visual

Studio and go to the Solution Explorer then right click on one of the source files named

IadsDS_SimStyle.cpp, IadsDS_DecomStyle.cpp or IadsDS_BlobStyle.cpp and select

Properties. Then in the Property Pages dialog go to the Excluded From Build entry

located under Configuration Properties->General and specify No to include the file or

Yes to exclude the file. Make sure only one of the cpp files is set to No before building

the project.

http://iads.symvionics.com/programs.html

The different example programs are described as follows:

1) Simulator Style (IadsDS_SimStyle.cpp) - This program sends four data parameters

along with time words to the IADS Server. The data parameters are all at the same

sample rate which is typical of simulator output. Since this is the simplest case we

recommend that you start with this example. To setup a project build, the

IadsDS_SimStyle.cpp should be the only cpp file where the Excluded From Build

property is set to No. The parameter definition file associated with this program is

named IadsDS.prn.SimStyle and located in the main project directory. Note that this

program applies packet format 100 (tag/tag/value/value).

2) Decom Style (IadsDS_DecomStyle.cpp) - This program sends five data parameters

along with time words to the IADS Server. The data parameters are at different

sample rates which is typical of decom-based systems. This provides a more complex

example showing how to populate packets using differing sample rates. To setup a

project for build, the IadsDS_DecomStyle.cpp should be the only cpp file where the

Excluded From Build property is set to No. The parameter definition file associated

with this program is named IadsDS.prn.DecomStyle and located in the main project

directory. Note that this program applies packet format 100 (tag/tag/value/value).

3) Blob Style (IadsDS_BlobStyle.cpp) - This program sends one Blob parameter along

with time words to the IADS Server. The Blob parameter contains four floating point

parameters. To setup a project for build, the IadsDS_BlobStyle.cpp should be the

only cpp file where the Excluded From Build property is set to No. The parameter

definition file associated with this program is named IadsDS.prn.BlobStyle and

located in the main project directory. Note that this program applies packet format

101 (tag/size/value).

3.2 Running the IADS Data Source Program

The IADS Data Source program can be run either within the Visual Studio

environment or by creating a shortcut on the Windows desktop that points to the

program’s executable file (IadsDS.exe). Each version of the example program launches a

command window and then goes into a state that waits for the IADS Server to connect.

The next section provides instructions on how to use IADS to test the data source

interface.

4.0 IADS Real Time Station

To test the data source interface we recommend using the IADS Real Time

Station (RT Station) product in order to perform communication protocol and data flow

verification activities. RT Station is an installable application that includes both the IADS

Server and IADS Client display subsystems so that data from the data source program

can be delivered and viewed in IADS.

The RT Station installation package is available either by purchasing the product

from SYMVIONICS, Inc. (Part numbers are IADS-TELEM-RTSTATION-1 or IADS-

TELEM-BASE-TPP) or by requesting the IADS Data Source Developers Kit (IADS-

TELEM-DEV)

4.1 Running RT Station

Running RT Station brings up a start wizard that will guide you through the

process of selecting setup information that describes how to connect to the data source

program and specify the parameter definition file. The startup steps are as follows:

1) Make sure the data source program is running and waiting to connect to IADS.

2) Double click the IADS Real Time Station icon on the Windows desktop.

3) On the Choose Data Source page select the IADS Custom option from the drop

down menu in the Data Source field. Click Next to continue.

4) On the Choose Data Host page enter the name or IP address of the computer

running the data source program in the Host Name entry. This can be entered

manually or selected via the browse button on the right of the entry. The PortId

entry defaults to 49000 which is the initial setup in the example data source

program. This field can be edited to specify the port id that is available on the data

source for connection. Click Next to continue.

5) On the Choose PRN File page select the parameter definition file that contains the

parameter specifications of the data source output. There is a browse button

available on the right of the entry to assist in locating the file. If you are running

one of the sample programs the matching parameter definition files are in the

IADS Data Source project location. Click Next to continue.

6) On the Choose Data Directory page select the destination folder for your IADS

data storage files. A browse button is available on the right of the entry to assist in

locating the directory. Click Next to continue.

7) On the Choose IADS Config File page select the Create new Config file option

within the Config File Selection section. This will automatically create a new

IADS Configuration File from scratch that contains the parameters specified in

the parameter definition file you selected earlier in the wizard. Click Next to

continue.

8) On the Start Data Acquisition page review the settings and click Finish to start

IADS.

At this point RT Station will connect to the data source and start ingesting and

processing data packets. The IADS Client application will then be launched and you

will be prompted to startup the client via the IADS Log On dialog. Select the

predefined user name User1 and desktop name Desktop1 then click the Log On

button (This step is automatic if User1 and Desktop1 are the only options.) This user

and desktop setup contains a blank Analysis Window (Window1) which acts as a

palette for data displays to be added.

4.2 Creating Displays in IADS

In order to view the data being delivered from the data source you need to create

displays within the IADS Client application. IADS displays are created using icons in the

Display Builder shown below. The Display Builder button is located in the far right

portion of the IADS Dashboard. Use the Window1 analysis window to house the

displays. The steps to build up displays are as follows:

4.2.1 Creating an IADS Display

1) On the Dashboard click the Display Builder button.

2) On the Display Builder dialog click the Data Displays tab. A selection of display

types is presented.

3) On the Data Displays tab click on the Vertical Stripchart icon then hold down

the left mouse button and drag onto Window1. This will create a new instance of a

strip chart display inside the window.

4.2.2 Adding Parameters to an IADS Display

1) On the Dashboard click the Parameter Tool button.

2) On the Parameter Tool select a parameter then hold down the left mouse button and

drag onto the strip chart display. Select Value in the popup options after dropping the

parameter onto the display (i.e. releasing the left mouse button).

The following are example windows showing data from the three sample

programs contained in the IADS Data Source project:

Simulator Style

Decom Style

Blob Style

More detail on display types and general client functionality can be found in the

IADS Client Help system which can be accessed via the lower right-most button on the

Dashboard.

5.0 Troubleshooting

5.1 Validating Time

When the IADS Server connects to the data source and starts receiving packets it

goes through a brief period of verifying that time parameter values are increasing at the

expected increment. A common problem with a new data source interface is that the

IADS Server may not successfully validate time during startup because the time values

are not increasing at an increment based on the time word sample rate. For example if the

rate of the time parameter is 1000 samples per second the IADS Server will expect time

value increments of 1 millisecond per sample. Any time decrements or increments over

2x the expected rate will cause a validation failure. If time does not successfully validate

a dialog containing possible reasons for failure will pop up as follows:

Typical reasons for time validation failures are as follows:

1) One or both time parameter tag ids are not found in the data. In this case verify that

the parameter definition file that was entered during wizard startup contains the

correct tag ids for the upper and lower time parameters. Verify that the data source is

actually placing time parameter samples within the data packets. Check that the data

source is truly sending data packets to the IADS Server.

2) Invalid time sequence errors. In this case verify the sample rate of the time

parameters in the parameter definition file are correct. Verify there are no upstream

errors occurring from the time source...e.g. Time Code Generator. Time values that

seem corrupted (e.g. IRIG day values outside the range of 1-366) could mean that

there is a packet misalignment...verify that the packet size specified in the 1st word of

the packet header corresponds to the actual size of the remaining portion of the header

along with the packet payload size.

A source of information that assists in determining reasons for validation errors is

a file named “timeOut0.txt” located in the Logs folder under the IADS data directory that

was specified during wizard startup. This file contains time values of each time word

received by the IADS Server during the time validation period. An empty file means that

one or both time parameter tag ids were not sensed during the validation period (see

reason 1 above). The file is also valuable for obtaining more detail on invalid time

sequence errors (see reason 2 above). An example format of the “timeOut0.txt” file is as

follows:

001:00:00:00.020 (86400020000000)

001:00:00:00.040 (86400040000000)

001:00:00:00.060 (86400060000000)

001:00:00:00.080 (86400080000000)

001:00:00:00.100 (86400100000000)

The 1st column is the IRIG representation of the time values and the 2nd column

is the 64-bit integer representation of the values (in nanoseconds). In this example the

time is incrementing by 20 milliseconds per sample which should correspond to a 50

sample per second rate for the time parameters specified in the parameter definitions file

For further troubleshooting assistance please zip up the entire Logs folder located

in the IADS data directory and send to iadssupport@SYMVIONICS.com to help in

analyzing the issue.

file:///D:/Projects/IADS/Documentation/UserGuides/iadssupport@symvionics.com

APPENDIX A

IADS Interface Message Format 1

Message size

 Sequence

number Packets sent

Data loss/overflow

Dummy

Dummy

:

:

value 2

tag 1 / tag 2

value 1

tag 1 / tag 2

value 1

value 2

:

0

1

2

3

4

7

Header

Body

tag/value

pair set 1

tag/value

pair set n

 32-bit

IADS Interface Message Format 2

Message size

 Sequence

Packets sent

Data loss/overflow

Dummy

Dummy

:

:
value

tag

size

tag

size

value

:

0

1

2

3

4

7

Header

Body

tag/size/value

set 1

tag/size/value

set n

 32-bit Note: Size in bytes of value

field determined by size field

APPENDIX B

Sample Parameter Definition File

1 TimeUpperWord 1000.0 1 SystemParamType = MajorTime

2 TimeLowerWord 1000.0 1 SystemParamType = MinorTime

3 PARAMETER1 12.330334596 2

4 PARAMETER2 24.6606691919 2

5 PARAMETER3 49.3213383838 2

6 PARAMETER4 98.6426767677 2

7 PARAMETER5 197.285353535 2

8 PARAMETER6 394.570707071 2

9 PARAMETER7 789.141414141 2

10 PARAMETERBLOB 10.0 7 DataSize = 92

100 DECOMSTATUS 789.141414141 1 SystemParamType = DecomStatus

APPENDIX C

IADS 32-bit Decom Status Parameter Format

 31-6 5 4 3 2 1 0

SF(n+1)STAT- SF(n)STAT SF2STAT SF2STAT SF1STAT SF1STAT FSTAT FSTAT

Bits Signal Description___________

0-1 FSTAT The Frame Status bits are decoded as follows:

1 0

0 0 Lock

0 1 Check

1 0 Verify

1 1 Search

2-3 SF1STAT Subframe 1 Status Bits are decoded as follows:

 3 2

0 0 Lock

0 1 Check

1 0 Verify

1 1 Search

4-5 SF2STAT Subframe 2 Status Bits are decoded as follows:

 5 4

0 0 Lock

0 1 Check

1 0 Verify

1 1 Search

