
IADS Programming

User Guide

Jul 2020
Curtiss-Wright Document SSD-IADS-140

©2020 Curtiss-Wright
All rights reserved.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 2

Table of Contents
1. Programming Resources ... 4

1.1 Overview .. 4

2. Custom ActiveX Display Plugins .. 4

2.1 Creating an IADS custom ActiveX control using C# VS2015.................. 4
2.1.1 Adding properties to your new display using C# VS2015 12
2.1.2 Debugging your new display in IADS using C# VS2015 15
2.2 Creating an IADS custom ActiveX control using C++ VS2015 16
2.2.1 Adding properties to your new display using C++ VS2015 23
2.2.2 Debugging your new display in IADS using C++ VS2015 29
2.3 Adding your new display to IADS .. 32
2.4 IADS demo model control project.. 34

3. Custom Derived Functions .. 35

3.1 Creating a custom derived function using C# VS2015 35
3.1.1 Debugging your new function in IADS .. 43
3.2 Creating a custom derived function using C++ VS2015 45
3.2.1 Debugging your new function in C++ VS2015 57
3.2.2 Deploying your new function in C++ VS2015 59
3.3 Accessing your new function in IADS .. 61
3.4 Advanced Topics .. 64
3.4.1 Initialization and execution of your custom function 64
3.4.2 Returning multiple results from your custom function 67

4. Custom Plugins... 73

4.1 Creating a custom export plugin using C++ VS2015 73
4.1.1 Adding IADS Interface files ... 83
4.1.2 Adding IDataExportPlugin code and your export code 88
4.1.3 Make your DLL self-register for use in IADS .. 90
4.1.4 Debugging your new plugin in IADS ... 92

5. Application Programming Interfaces .. 93

5.1 IADS Configuration File API ... 93
5.1.1 Configuration Interface ... 93
5.1.2 Collection Interfaces .. 94
5.1.3 General Purpose Query Interface .. 103
5.2 IADS Data File API ... 104

6. IADS Automation Interfaces .. 105

6.1 IADS Data Export Scripts .. 105
6.2 IADS Data File Reader in Visual Basic ... 105

7. IADS Data Processing.. 106

7.1 IADS Real Time Data Source Interface ... 106
7.1.1 Data Source Specification.. 106
7.1.2 IADS Server Setup.. 109

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 3

7.1.3 Testing the data source using IADS Real Time Station 114
7.1.4 Troubleshooting ... 124
7.2 IADS Command Interface .. 125
7.2.1 IADS Commander .. 126
7.2.2 The CDS Command Server .. 136
7.2.3 Initialization Commands and Information ... 139
7.2.4 Data Acquisition Commands and Information 143
7.2.5 Stopping Data Command and Information .. 148
7.2.6 Time Information ... 149
7.2.7 Archiving Commands and Information .. 150
7.2.8 Nulling Commands and Information ... 153
7.2.9 Data Compression Commands and Information 154
7.2.10 Run State Information .. 157
7.2.11 Data Source Information ... 158
7.2.12 System-wide Information ... 159
7.2.13 Startup IADS Command Line Options ... 162
7.3 IADS Server (CDS) Data Throughput Performance Testing 163
7.3.1 Overview .. 163
7.3.2 To run the data throughput test ... 163

8. Other ... 166
8.1 Iadsread Matlab Extension .. 166
8.2 Iadsread for Python ... 169
APPENDIX A .. 180
APPENDIX B .. 182
APPENDIX C .. 184
APPENDIX D.. 186
APPENDIX E .. 187

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 4

1. Programming Resources

This guide details methods to programmatically extend IADS by using step by step
examples many of which have working projects with source code that are available for download
from the IADS Web site.

1.1 Overview
IADS provides programmatic extension to the core system using several

techniques. Within the IADS Client, plug-ins can be written using Microsoft COM technology,
including new displays, additions to the derived computational engine and custom data export
extensions. The IADS Client also extends an automation interface for easy scripting. For access
to external data and configuration files IADS provides a set of COM based libraries which can be
linked into your programs. Finally, for data processing, IADS includes a standard Ethernet
protocol for custom real time data interfaces and a command and control interface for real time
operation.

2. Custom ActiveX Display Plugins

For more background on how to build an ActiveX display, download the sample ActiveX
Display project from the Curtiss Wright IADS website and read the comments within the code:
https://iads.symvionics.com/support/programming-examples/

Warning- Be careful about pasting code directly from this tutorial. For instance, Visual
Studio encapsulates strings in different quotation marks ("") than the standard quotes in Word.
(“”). You may need to type certain things out manually or edit existing code slightly.

2.1 Creating an IADS custom ActiveX control using C# VS2015
This tutorial assumes you are using Microsoft Visual Studio 2015. It should apply to

other versions with minimal modification. This instruction will guide you through the process of
creating a custom display for IADS using the project wizard in Visual C#.
1) Open up VS2015 and Select File > New > Project.

https://iads.symvionics.com/support/programming-examples/

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 5

2) In the New Project dialog that appears, choose the Other Languages > Visual C# tier and
click the Class Library option. At this point, please read the next step before you finish
completing the dialog. There are some important considerations when choosing the proper
project name.

3) The project name you choose will become part of the display identifier name (also known as

the ProgID, see note below). When it comes time to use your control in IADS, users will
insert your new control into the “Display Builder” toolbox based solely upon its name (more
on this later). Plan on creating many displays in one “project” (most common and easier to
manage the code). Choose a general project name like “AircraftGauges” or
“FluidSystemDisplays”. One way to look at it is that the project name is akin to the “Genus”
of your display, so shoot for generality. Consider prefixing the project name with your
organization like “NASA” or “Lockheed”, as it may easier for users to locate your control the
“Display Builder” list (i.e. NasaFluidSystemDisplays or LockheedAircraftGauges).
Note: Microsoft refers to your display’s name as its “ProgID” (also known as the Program
ID). This is the string equivalent of your GUID (Global Unique Identifier) for the function.
These Ids are placed in the Microsoft registry (directly from your project’s “.rgs” file),
allowing your object to be created without any knowledge of the location of your “Dll” on
the file system. Of course, this assumes that it is registered using the “regsvr32” program
(consult the Microsoft documentation).
Now, in the fields at the bottom of the dialog, enter the project name, location, and the
solution name.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 6

4) After pressing OK, the project will be ready for editing. Before we begin, delete the
Class1.cs file. We will not need the file.

5) Right-click on your project in the Solution Explorer and choose Add > New Item.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 7

6) In the “Add New Item” dialog select User Control. Enter the name of your display in the
field and click the Add button.

7) Visual Studio now displays the “Design” view of the display and shows a blank form. You
can use the Visual Studio “Toolbox” to add a visual object. Drop a ProgressBar into the
form; it is located under the “Common Controls” tier in the Toolbox.

8) Now that we are done adding components, we will need to do some work in the code section.
Go to the Solution Explorer and right-click on your “displays.cs” file. Select View Code. In
your “displays.cs” file, add the following using clauses:
using System.Reflection;

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 8

using System.Runtime.InteropServices;
using Microsoft.Win32;

9) Now add the following attributes to your class:

[ProgId(“MyCSharpDisplays.MyCSharpDisplay”)]
[ClassInterface(ClassInterfaceType.None)]
[ComVisible(true)]
Note that the ProdId attribute is the same “ProgID” as mentioned in step 3. This will become
your display’s name inside of IADS, so choose appropriately. If you have followed the steps
correctly, the name should be in the form of ProjectName.ClassName.
There are several ClassInterfaceType options. “None” provides the fewest default properties
beyond the ones you explicitly specify.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 9

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 10

10) Add the following methods to perform the COM registration functions. COM is the interface
method that IADS will use to send/receive data, save, and load your display. The registration
mechanism is the manner in which IADS will identify your display after it is installed on a
PC. If you skip this step, you will not be able to see your display in the IADS Display
Builder dialog.

 [ComRegisterFunctionAttribute]

 public static void RegisterFunction(Type t)
 {
 Microsoft.Win32.Registry.ClassesRoot.CreateSubKey(@"CLSID\{" +
t.GUID.ToString().ToUpper() + @"}Programmable");
 Microsoft.Win32.Registry.ClassesRoot.CreateSubKey(@"CLSID\{" +
t.GUID.ToString().ToUpper() + @"}\Control");
 }
 [ComUnregisterFunctionAttribute]
 public static void UnregisterFunction(Type t)
 {
 Microsoft.Win32.Registry.ClassesRoot.DeleteSubKey(@"CLSID\{" +
t.GUID.ToString().ToUpper() + @"}Programmable");
 Microsoft.Win32.Registry.ClassesRoot.DeleteSubKey(@"CLSID\{" +
t.GUID.ToString().ToUpper() + @"}\Control");
 }

The RegisterFunction is called when the display is registered during the execution of the
RegAsm utility. The UnregisterFunction is called when a display is unregistered. For more
information on registering a display before use, consult the online Microsoft documentation.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 11

11) Ensure the display is compiled with the necessary COM code so that it can communicate
with IADS. In the “Project” drop down menu, select Properties.

12) Under the “Build” tab scroll down to the bottom and check the Register for COM interop

option.

13) After this step is complete, save your work and continue onto the next section.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 12

2.1.1 Adding properties to your new display using C# VS2015
At this step in the process you will add properties to your display. Think of properties as

“data injection ports” or “interface plugs”. They are attributes of your display, for example, text
color, needle angle, scale factor; any feature you want the user to change or animate. To give a
concrete example, the included demo project is code for an “Attitude Indicator” that simulates an
aircraft dial. It has properties for “Roll”, “Pitch” and “Heading” as well as “Sky Color” and
“Ground Color”.

Any property that you include in your display will be an access point on which the user
can modify its contents/characteristics/behavior. Changing the “Pitch” property in my attitude
indicator example would, as expected, cause the display to rotate its graphics to indicate the new
pitch angle. As so, you need to understand the scope of your display’s behavior and provide your
users every property that you foresee them changing (within reason); and supply the code that
responds to these property values and outputs the appropriate response. When this is complete,
the user can drive any of these properties, with data from IADS, simply by dragging and
dropping a parameter on the display; or they can set any of these properties to a constant value
using the “right-click” properties sheet of the display. The best part is that all you have to do is
worry about what properties to add and how to implement them and IADS will take care of ALL
of the data related issues.

1) Add a public interface to the class. This is the interface which we will put all our properties
that we want to expose to the user. In this example, we have added the Value property to
provide access to the Value property of the .Net ProgressBar control.

public interface IProgressBar
{
 int Value {set; get;}
}

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 13

2) Add the interface to the User Control class:
public class MyCSharpDisplay : Usercontrol, IProgressBar

3) The next step is to implement the created code for each new property we add. In this
example, we will focus on the set and get functions for the “Value” property.

4) For the set function, we will need to capture the incoming value and push it into the progress
bar object. Once that is complete, our progress bar should redraw and display the new value.
Please be aware that the value from the outside might be pushed on this display at a very high
frequency. It might be prudent to add code to determine if the incoming property value is
different than the existing value of a property and forgo the setting on the progress bar. This
is vital optimization you might need to consider when building more complex displays. For
this simple example, we will skip this step. The get function is easy to implement. Simply
return the value of our progress bar that we have created for this property.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 14

public int Value
{
 get
 {
 return progressBar1.Value;
 }
 set
 {
 progressBar1.Value = value;
 }
}

5) At this point you can modify the code in the display to perform your specific needs.
6) See section 2.3 to add your new display to IADS.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 15

2.1.2 Debugging your new display in IADS using C# VS2015

1) In the development environment, place a break point in one of the “Set” method for testing.

In Visual Studio, select the Project > Properties drop down menu. In the “Debug” tab, set
the “Start external program” field to the IADS application executable (Iads.exe). The exe is
located in the “C:\Program Files\Iads” directory. Build your project and click the “Go”
command IADS will start.

2) Drag-n-drop your display onto the new Analysis Window as explained in section 2.3. Once
that is complete, save your configuration. Choose a parameter from the Parameter Tool and
drop it onto the display. After the parameter is attached to a property, your break point should
now hit in the debugger. You can now step through your drawing code if necessary.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 16

2.2 Creating an IADS custom ActiveX control using C++ VS2015
This tutorial assumes you are using Microsoft Visual Studio 2015. It should apply to

other versions with minimal modification. This instruction will guide you through the process of
creating a custom display for IADS using the ATL COM Wizard in C++ VS2015.

Warning- Make sure to create a project with the same bitness (x64,x86) as your IADS
client. Your interfaces will not work if they try and run on a different architecture.

1) Open up VS2015 and Select File > New > Project.

2) In the New Project dialog that appears, choose the Visual C++ > ATL tier and click the
ATL Project option. At this point, please read the next step before you finish completing the
dialog. There are some important considerations when choosing the proper project name.

3) The project name you choose will become part of the display identifier name (aka ProgID,
see note below). When it comes time to use your control in IADS, users will insert your new

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 17

control into the “Display Builder” toolbox based solely upon its name (more on this later).
Plan on creating many displays in one “project” (most common and easier to manage the
code). Choose a general project name like “AircraftGauges” or “FluidSystemDisplays”. One
way to look at it is that the project name is akin to the “Genus” of your display, so shoot for
generality. Consider prefixing the project name with your organization like “NASA” or
“Lockheed”, as it may easier for users to locate your control the “Display Builder” list (i.e.
NasaFluidSystemDisplays or LockheedAircraftGauges).

Note: Microsoft refers to your function’s name as its “ProgID” (aka Program ID). This is the
string equivalent of your GUID (Global Unique Identifier) for the function. These Ids are
placed in the Microsoft registry (directly from your project’s “.rgs” file), allowing your
object to be created without any knowledge of the location of your “Dll” on the file system.
Of course, this assumes that it is registered using the “regsvr32” program (consult the
Microsoft documentation).
Now, in the fields at the bottom of the dialog, enter the project name, location, and the
solution name.

4) After pressing OK, the “ATL Project Wizard” dialog will appear as below.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 18

5) Click the Next button in the Wizard. On the new wizard page, ensure that the “Dynamic Link
Library (DLL)” is checked. Every display that runs in IADS is of

type DLL because it allows for maximum speed in displaying graphics. Press the Finish
button and the Wizard will set up your project.

6) Next, go to the “ClassView” tab in Visual Studio’s workspace and right-click on the project
name. Choose Add > Class.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 19

7) Upon adding a new class you will be presented with a dialog. Click the ATL tier and ATL
Control as shown below. When that is complete, press the Add button.

8) On the first tab, enter the name of your display in the “Short Name” field. The wizard will fill
out the rest of the tab automatically. For this example, I used “DisplayName” as the short
name. The name entered will be combined with your project name and will present the final
display name inside of IADS (ProjectName.FunctionName) as explained on page 1. See the

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 20

“ProgID” field in your dialog for your final IADS display name. Warning: Newer Visual
Studio versions do not automatically populate the ProgID field. Please ensure the ProgID
field contains your specific ProjectName.FunctionName text. If not, please type in the
appropriate text manually. Press “Next” to continue.

9) On the next tab (“Options”), leave everything as default (Standard control, Apartment, Dual,
Yes, and no other options checked). This will allow you to take full control of a “blank
canvas” and draw your display using low level graphics libraries such as GDI/GDI+ or
OpenGL. On the other hand, if you need to create a “dialog based” display containing typical
dialog elements such as text boxes, drop down lists, etc you will need to select the
“Composite control” choice.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 21

The remaining options are basically “COM speak”. If want understand these options fully,
you will have to consult the Microsoft documentation. The most notable remaining option is
“Interface”. In order to create a real compliant ActiveX “display”, you must choose “Dual”
interface. This will enable IADS (and other programs) to interface to your control using the
“IDispatch” interface, which allows a loosely coupled, “on the fly” communication. This also
happens to be the primary (simplistic) way that IADS gets data to your control. More on this
subject later.

10) On the next tab (“Interfaces”), leave all of the default choices and select “Next”. Again, these
options are more “COM speak” and include standard interfaces in which the Wizard will
implement for you automatically. If you want more background information, consult the
Microsoft documentation.

11) On the next tab (“Appearance”), select the “Windowed Only” checkbox if you plan on using
OpenGL; otherwise uncheck it. “Windowed Only” will ensure that we have a window to
create an OpenGL context upon. For GDI based displays, we want to attempt to draw
“without a window” for speed and resource considerations. Leave the other settings as
default (later discuss the speed benefits of de-selecting the “Normalize DC” checkbox).
Remember, OpenGL = “Windowed Only”. Don’t worry, this can be easily changed later if
you make a mistake (as can almost anything).

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 22

12) On the next tab (“Stock Properties”), leave all the options empty and select “Next”. These
options are display properties that the Wizard will implement for you automatically.
Generally, each property will be added after Wizard is complete. If you want more
background information, consult the Microsoft documentation.
After clicking “Finish”, the Wizard will auto-create most of the code needed for your new
display. Examine your “Solution Explorer” view. It should now contain the new display
object by name.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 23

2.2.1 Adding properties to your new display using C++ VS2015
At this step in the process you will add properties to your display. Think of properties as

“data injection ports” or “interface plugs”. They are attributes of your display, for example, text
color, needle angle, scale factor; any feature you want the user to change or animate. To give a
concrete example, the included demo project is code for an “Attitude Indicator” that simulates an
aircraft dial. It has properties for “Roll”, “Pitch” and “Heading” as well as “Sky Color” and
“Ground Color”.

Any property that you include in your display will be an access point on which the user
can modify its contents/characteristics/behavior. Changing the “Pitch” property in my attitude
indicator example would, as expected, cause the display to rotate its graphics to indicate the new
pitch angle. As so, you need to understand the scope of your display’s behavior and provide your
users every property that you foresee them changing (within reason); and supply the code that
responds to these property values and outputs the appropriate response. When this is complete,
the user can drive any of these properties, with data from IADS, simply by dragging and
dropping a parameter on the display; or they can set any of these properties to a constant value
using the “right-click” properties sheet of the display. The best part is that all you have to do is
worry about what properties to add and how to implement them and IADS will take care of ALL
of the data related issues.
1) Now, make sure that you are in the “ClassView” tab of the VS2015 workspace. To add a

“Property” to your new control, Right-click on the “XXXXX” where “XXXXX” is the name
of your newly created display (look for the little “magnifying glass” icon). Select “Add
Property” from the popup menu.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 24

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 25

2) In the Add Property Wizard, set the property type to the desired data type (double in this
example) and the name of the property (Roll in this example) and click Next.

3) In the last page of the Add Property Wizard, leave all the options as default except the

helpstring field. This helpstring will be displayed in the IADS properties sheet when the user
is setting the property, try to provide a descriptive (but short) sentence for your new property.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 26

4) When you are complete, press the “Finish” button. This will auto-create code to implement a
property named “Roll” within your new project. Repeat this process (starting from step 1) for
every property that you want to add to the display.

5) Going back to your “Solution Explorer”, you will see the new property code inserted into
your display’s .cpp file.

6) The next step is to implement the code created for each new property we added with the Add
Property Wizard. Thus, in our example property “Roll”, we will need to focus in on the
put_Roll and get_Roll functions. In preparation, we will need to add a class member variable
for each new property. For the Roll property, add a new class member variable to the .h
display class named “mRoll” with the same data type as the property (double in this
example). Do not forget to set this new member variable mRoll to 0.0 in the “FinalConstruct”
function which is also part of the .h class.

7) For the put_Roll function, we will need to capture the incoming value and store it in a class
member variable. Once that is complete, we will call a function named “FireViewChange”
that will let our display know it needs to be redrawn. When the redraw function (OnDraw) is
called, we will then use the value contained in the class member variable to draw the display.
In addition, we will set a variable called m_bRequiresSave to TRUE, telling IADS that we
wish to save our display. This is a vital step to ensure your display is saved within IADS
when a property is changed. Notice that we only perform this code if the incoming property
value is different than the existing value of the property. The get_Roll function is easy to
implement. Simply return the value of our class member variable that we have created for
this property.

8) Now, when all of your properties are implemented, add your “drawing code” to the
“OnDraw” function. The OnDraw function is where you will take all the values of your class
member variables and actually draw the display content. See the sample projects for
examples in both GDI and OpenGL.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 27

Ensuring your display is saved in IADS
1) Go to your “.h” file (SampleDisplay.h in this example) and insert the code “public

IPersistPropertyBagImpl<CYourClassName>” as below. This will allow the control to
“save” in IADS properly. Don’t forget to add a “comma” to the end of the line above this
new line.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 28

2) Likewise, you need to add “COM_INTERFACE_ENTRY(IPersistPropertyBag)” to the
“Com Map” in the “BEGIN_COM_MAP” area of the code as below. This is also needed to
allow the control to “save” in IADS.

3) For every property to “save”, add it to the “BEGIN_PROP_MAP” area of the code as below.

The number corresponds to the property id that is defined by the wizard in the “.idl” file of
the project. Examine your “.idl” file from the “Solution Explorer” tab of the workspace for
the correct number. Properties in your “PROP_MAP” will get saved by IADS and reloaded
when the display is created in a saved Analysis Window.

4) At this point, you can begin modifying the code in the display to perform your specific needs.
5) See section 2.3 to add your new display to IADS.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 29

2.2.2 Debugging your new display in IADS using C++ VS2015
1) Place a break point in your “OnDraw” method for testing.

2) In Visual Studio, select the Project > Properties drop down menu. Under the “Configuration

Properties > Debugging” tier, pick “Iads.exe” as your “Command”. The Iads.exe is located in
your “C:\Program Files\Iads” directory. Build your project and click on the “Go” command.
IADS will start.

3) Drag-n-Drop your display to the new Analysis Window as in section. Your break point

should now hit in the debugger. You can now step through your rendering code if necessary.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 30

Deploying your new display in IADS
When it comes time to deploy your new control to users on other PCs, you need to

consider a couple of issues. One issue is that your control may require some auxiliary dlls that
are not available on the other systems. If that occurs and the dlls are missing, the control may not
operate. To help minimize this possibility, you must always build your new control dll in
“Release” mode. You should never distribute a control dll that has been compiled under the
“Debug” mode. The debug mode uses libraries that will most certainly be missing on any
machine without Visual Studio installed. Beyond that, it is always best to ‘statically link’ all the
runtime libraries. Also, since we’ve used ATL to build this display, we will need to statically
link the ATL library as well.

1) In Visual Studio, select the “Project->Properties” drop down menu. Make sure that the
“Configuration” dropdown is set to “Release”. Under the “Configuration Properties > C/C++
> Code Generation” tier, set the “Runtime Library” to “Multi-threaded (/MT)”.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 31

2) Once you have made these changes to your project, you should rebuild your ‘solution’. Make

sure once again that your current configuration is set to “Release” and then select the Build >
Rebuild Solution drop down menu option. After this step is complete, your control dll
should be in your project “Release” folder. It should now be ready to deploy on another
system.
The control dll will need to be copied to the other PC and ‘registered’. In order to register the
dll, you will have to run the ‘regsvr32.exe’ program. One easy way to accomplish this is to
double click on the dll in Windows Explorer. When asked what program to execute on the
dll, navigate to the Windows\System32 directory and choose the regsvr32.exe file. This
procedure may be different if the operating system is a 64 version. Please consult the online
documentation for specifics.
If the dll fails to register at this point, we’ve most likely failed to statically link the needed
dlls. We can investigate which dlls are missing by using the “Dependency Walker” tool. The
Dependency Walker program is located within the Microsoft Visual Studio\Common\Tools
directory and is named “Depends.exe”. Copy Depends.exe from your development PC to the
target PC and run the program. From the File drop down menu select Open and choose your
control dll. Examine the module list in the bottom window pane. Any missing dependent dlls
should show up with a question mark. Search for those dll names on the net and find out their
purpose. It might help you narrow down what solution setting you have missed. It is also
possible that the missing dll is a private library that you are using, in which case you will
need to either static link or copy that dll to the target machine as well.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 32

2.3 Adding your new display to IADS
1) Click the Display Builder button in the bottom right corner of the IADS Dashboard.

The “Display Builder” dialog will appear with icons of components that you can use to build
your displays (including your new ActiveX control).

2) Click on the Analysis Window icon (upper left) and hold down the left mouse button to drag
it onto your Desktop.

3) Now let’s add your new control to the “Display Builder”. Click on the second tab in the
display builder named “ActiveX Controls”. This is where all ActiveX displays will reside,
ready to be dropped upon your newly created Analysis Window. Notice that there are only a
select few ActiveX control icons on this tab of the display builder. If the display builder were
to show all of the controls available on your system, the icons would fill several pages of this
size. In order to add your new control, you must “Right-click” on tab (somewhere where
there are no icons). This will activate yet another dialog containing both the “IADS” supplied
ActiveX controls as well an entire list of all the ActiveX controls on your system (including
your newly created one!). Click on the All Controls tab of this new dialog and find your new
control. The name will be ProjectName.ObjectName” as discussed earlier in this tutorial.
Click OK to add your display to the display builder. This only needs to be done once for
each new control that you wish to debug/add in IADS.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 33

Note: If you cannot locate you display in the “All Controls” list, try checking your “.rgs” file
in your VS2015 project in the “workspace” file view. It contains an entry named
VersionIndependentProgID. This is where VS2015 stores your “ProgId” (Program ID) for
the project.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 34

2.4 IADS demo model control project
The “ActiveX display - 3D Model Demonstration” project is available for download on

the Curtiss Wright IADS website at https://iads.symvionics.com/support/programming-
examples/

The sample project has code to build an “Attitude Indicator” that simulates an aircraft
dial. It has properties for “Roll”, “Pitch”, and “Heading” as well as “SkyColor” and
“GroundColor”. Any property that you include in your display will be an “access point” on
which the user can modify its contents/characteristics/behavior. Changing the “Pitch” property in
my attitude indicator example would, as expected, cause the display to rotate its graphics to
indicate the new pitch angle. The magic of building an ActiveX control is then to understand the
“scope” of your control’s behavior, and to provide your users every property that you foresee
them changing (within reason, don’t go overboard); and also to supply code that responds to
these property values and outputs the appropriate response (i.e. draw attitude indicator display at
the current value of the roll, pitch, heading, SkyColor and GroundColor properties). When this is
complete, the user can drive any of these properties, with data from IADS, simply by
dragging/dropping a parameter on your newly created display; or they can set any of these
properties to a constant value using the “right-click” properties sheet of the display. The best part
is that all you have to do is worry about what properties to add and how to implement them, and
IADS will take care of ALL of the data related issues.

https://iads.symvionics.com/support/programming-examples/
https://iads.symvionics.com/support/programming-examples/

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 35

3. Custom Derived Functions

For more background on how to build a custom function, download the tutorial with
sample function (zip) on the Curtiss Wright IADS website; and read the comments within the
code: https://iads.symvionics.com/support/programming-examples/

Some projects will use files provided in the “Custom Derived Function Helper Classes”
download.

3.1 Creating a custom derived function using C# VS2015
1) Open up VS2015 and Select File > New > Project.

2) In the New Project dialog that appears, choose the “Visual C#” tier and click the Class

Library option. At this point, please read the next step before you finish completing the
dialog. There are some important considerations when choosing the proper project name.

2) Plan on creating many functions in one “project” (most common and easier to manage the
code). The project name should be similar to the “Genus” of your function, so shoot for
generality. Consider prefixing the project name with your organization like “NASA” or
“Lockheed” and the type of functions you will be adding (example: NasaFluidFuncs).
Now, in the fields at the bottom of the dialog, enter the project name, location, and the
solution name.

https://iads.symvionics.com/support/programming-examples/

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 36

3) After pressing “OK”, the project will be ready for editing. Rename the Class1.cs file to

reflect our function name. In this example, we will call it ‘MyFunction.cs’.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 37

4) In preparation for the next step, we will need to add another “using” directive. In the code
view, add a line “using System.Runtime.IteropServices”.

5) Now we need to focus on the entire function name as it will appear to the IADS end user.

The format of the function name requires two strings separated by a period (‘.’). It is best
practice to use the Visual Studio project name as the first portion of the name (before the
period). The portion after the period should be your specific function name. For instance,
ProjectName.ClassName, NasaFluidFuncs.FlowRate, or in this tutorial
MyFunctions.MyFunction. We will define that name explicitly by using the “ProgId”
directive. In the code view, type [ProgId(“MyFunctions.MyFunction”)] above your class
definition “public class MyFunction”.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 38

6) The next step is to implement the interface that IADS requires to call your function. To
accomplish this task, we will need to add a reference to the definition file of the interface.
From the Project menu, select Add Reference.

7) In the “Add Reference” dialog, select the COM tab. Scroll down until you see “Iads

Function Interface 1.0 Type Library”. Press OK to add the reference to our project.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 39

8) Now, back in the Solution view, notice that the IadsFunctionLib has been added to our
References section. This reference contains the definition of the IADS custom function
interface. Now, we will need to add the interface to our class definition. First, type a colon ‘:’
after the class name and add the text “IadsFunctionLib.IIadsFunction”. In essence we will
inherit from the interface definition. After this is complete, we can implement the interface.

9) To implement the interface, click on the “IadsFunctionLib.IIadsFunction” text in the code

view window. You will see the ‘quick action’ (light bulb) icon. Select the icon and select
Implement Interface.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 40

10) After choosing the “Implement Interface” menu item, Visual Studio automatically writes the
shell of the function we must implement. Within the function, the “ref object dataIn”
argument represents an array of input argument values from the IADS environment. The “ref
object dataOut” represents the single return value that we are allowed to return. For example,
if a user typed a derived equation MyFunction.MyFunction(1,2,Param1), the dataIn object
would be an array of three elements containing the values 1,2, and the value of Param1
respectively. Our job is to take the input values, run some mathematical algorithm, and
produce a single object ‘result’. Discussions on returning multiple results from a single
function call will be touched upon at a later time. For simplicity sake, let us focus on the
multiple in, single out technology.

11) During this next step, we will need to decode the dataIn object and extract the input
parameter values. When that is complete, we can perform our calculation and return the
result. In the code window remove the line of code containing the “throw” statement. Add
the following code it its place:
Array dataInArray = (Array)dataIn;
Double arg1 = Convert.ToDouble(dataInArray.GetValue(0));
Double arg2 = Convert.ToDouble(dataInArray.GetValue(1));
Double arg3 = Convert.ToDouble(dataInArray.GetValue(2));
dataOut = arg1 + arg2 + arg3;

When you complete, your code should appear as follows:

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 41

12) Notice in the first line, we cast the ‘dataIn’ array to a C# array type object. This will allow us
to extract each function input argument in the subsequent lines of code. The first argument
passed into this function from IADS is array element 0, the second argument is 1, and so on.
By using the ‘Convert’ object, we can assign each input argument to a temporary variable.
Once these temporary variables are assigned, we can perform our calculation and return our
result. To return a result, simply assign the computed value to the ‘dataOut’ object.

13) At this point, you can begin modifying the code in the function to perform your specific
computation. For more background on how to pass arguments, check their types, and return
values, please refer to the SampleFunction project included with this tutorial. Make sure to
read the comments in the supplied compute functions.

14) Now that your function is basically complete, we must take care of some remaining interop
issues. We must ensure that the function is compiled with the necessary COM code so that it
can communicate with IADS. In the code view, type [ComVisible(true)] above the
ProgId definition line.

In the “Project” drop down menu, select Properties.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 42

15) Under the “Build” tab, scroll down to the bottom and check the Register for COM interop
option. These two last steps are very important. If you forget this step, or the previous
[ComVisible(true)]directive step, the function will remain undefined in IADS
because it will not properly registered on the system.

To debug the function, go to the “Debug” tab in the same dialog and set the “Start external
program” item to the location of the IADS executable, in this case “C:\Program
Files\Iads\ClientWorkstation\Iads.exe”.

16) When all these steps are complete, compile the project, fix any errors and run. In IADS, build

a new derived parameter that calls your new function, and drop the parameter in any display.
If you want to debug your calculation step by step, put a break point in your compute
function. The code will break for each new data point calculated.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 43

Note: See section 3.3 to access your new function in IADS.

3.1.1 Debugging your new function in IADS
1) Bring up your Visual Studio custom function project, and place a break point in your

“Compute” method for testing.

2) To run IADS from the debugger, go to the “Debug” tab in the same dialog and set the “Start

external program” item to the location of the IADS executable, in this case “C:\Program
Files\IADS\ClientWorkstation\Iads.exe”.

3) Build your solution again for good measure and click on the Start Debugging command (or

the F5 key); IADS will start. When IADS starts, pick the configuration file you wish to use
and click Open.

4) After IADS initializes, open the Configuration Tool, ParameterDefaults table (PDT) and
create a derived parameter. If you have already created a derived parameter referencing your
function, click on your equation in the PDT.
Notice that when you “tab out” or finish the equation in the PDT, your function will be
called. At this point you can debug all of the argument types and make sure you are getting
the correct items. If you have an argument error and return an error code from your function,
you will get an error message inside of IADS and the equation text will turn red in color.
After you have checked out the arguments, you can remove the breakpoint and debug the
function with real data.

5) Add a display to the new Analysis Window (i.e., Alphanumeric or Stripchart) as described in
section 3.3. If your parameter is not already attached to a display, drag and drop our new

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 44

function into the display. Your break point should now hit in the debugger. You can now step
through your computational code as necessary.
Again, for more background on how to pass arguments, check their types and return values,
please read the comments in the example project.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 45

3.2 Creating a custom derived function using C++ VS2015

1) Open up VS2015 and Select File > New > Project.

2) In the New Project dialog that appears, choose the “Visual C++ > ATL” tier and click the
ATL Project option. At this point, please read the next step before you finish completing the
dialog. There are some important considerations when choosing the proper project name.

3) The project name you choose will become part of the function identifier name (aka ProgID,

see inset). When it comes time to use your function in IADS, users will call your new
function in a derived equation based solely upon its ProjectName.ObjectName (we will add
the specific object name later). Plan on creating many functions in one “project” (most
common and easier to manage the code). One way to look at it is that the project name is akin

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 46

to the “Genus” of your function, so shoot for generality. Consider prefixing the project name
with your organization like “NASA” or “Lockheed” and the type of functions you will be
adding (example: NasaFluidFuncs).
Now, in the fields at the bottom of the dialog, enter the project name, location, and the
solution name.
After pressing OK, the “ATL Project Wizard” dialog will appear as below.

4) Click the Next button in the Wizard. On the new wizard page, ensure that the “Dynamic Link

Library (DLL)” is checked. Every function that runs in IADS is of type DLL because it
allows for maximum speed in computing calculations. Press the “Finish” button and the
Wizard will set up your project.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 47

5) Next, go to the “ClassView” tab in Visual Studio’s workspace and right-click on the project
name. Choose “Add->Class”.

6) Upon adding a new class you will be presented with a dialog. Click the ATL tier and ATL

Simple Object as shown below. When that is complete, press the Add button.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 48

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 49

7) On the first tab, enter the name of your function in the “Short Name” field. The wizard will
fill out the rest of the tab automatically. For this example, I used “FunctionName” as the
short name. The name entered will be combined with your project name and will present the
final function name inside of IADS (ProjectName.FunctionName) as explained on page 1.
See the “ProgID” field in your dialog for your final IADS function name. Warning: Newer
VisualStudio versions do not automatically populate the ProgID field. Please ensure the
ProgID field contains your specific ProjectName.FunctionName text. If not, please type in
the appropriate text manually. Press “Finish” to continue.

8) At this point, the Wizard will automatically create the shell of your function code. All we

need to do now is to take care of the interface portion of the function. Basically, we will need
to implement the defined “IIadsFunction” interface so that the function will be compatible
with the IADS environment.
Download the “Custom Derived Function Helper Classes” on the Curtiss Wright IADS web
site: https://iads.symvionics.com/support/programming-examples/
After you have downloaded the zip file, unzip its contents into your project folder. While
unzipping, you will notice a file called “IadsFunction.idl”. That is the file we will use to
implement the interface.

https://iads.symvionics.com/support/programming-examples/

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 50

9) Now let’s add the IadsFunction.idl to the project. Click the View tab at the top menu bar and
select Solution Explorer.

10) Expand you Solution, Right-click on the Project name, and select Add > Existing Item…

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 51

11) In the File Name box, type “*.idl” and then the enter key to show the Interface Definition
Language files. Choose “IadsFunction.idl” and then press the OK button to add the file into
your project. This should be the same IadsFunction.idl file that you unzipped in step 9.

12) Due to an apparent bug in Visual Studio 2015 (and earlier), we will have to manually correct

the output of the IadsFunction.idl file. Apparently, Visual Studio attempts to merge this
information into the output of your project’s idl file, but it does seem to work properly.
Right-click on the IadsFunction.idl in your Solution Explorer and select “Properties”.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 52

13) In the Property Pages dialog that appears, select the “All Configurations” drop down in the

upper left-hand corner of the dialog. It is best to also select “All Platforms” in the Platform
drop down. Open the MIDL->Output tier in the left window pane and correct the “Header
File”, “IDD File”, “Proxy File”, and “Type Library” fields using the base name
“IadsFunction”. When you are complete, the dialog should match the picture below. After
confirming the dialog contents, press OK.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 53

14) Now, build your Solution. After the build process is complete, a “typelib” file will be
created. We can use this typelib file to implement the IadsFunction interface. The typelib file
is simply a compiled binary version of the IDL file.

15) Go back to the ClassView tab of the Workspace viewer. Right-click on the “C[your function

name]” class object and then choose “Add->Implement Interface…”

In the Implement Interface dialog, ensure that the IadsFunctionLib<1.0> library is selected in
the “Available type libraries” drop down. When that is complete, you will notice that the
IIadsFunction interface appears in the “Interfaces” list. Select IIadsFunction and press the
“>” button. When IIadsFunction appears in the “Implement Interfaces” list, press Finish.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 54

16) We’re almost done now. At this point we can concentrate on the actual function code (at

last). In the Solution Explorer tab of the Workspace View, locate your “[Function Name].h”
file and click on it to begin edit. Scroll down to almost the end of the source code and locate
the wizard generated code:
STDMETHOD(Compute)(VARIANT * dataIn, VARIANT * dataOut)
{
 // Add your function implementation here.
 return E_NOTIMPL;
}

Remove this entire function as we are about to inject some example code.
17) In the place of the code you just removed, insert the following example code:

STDMETHOD(Compute)(/*[in]*/ VARIANT* dataIn, /*[out]*/ VARIANT* dataOut)
{
 int argCount = dataIn->parray->rgsabound->cElements;
 if (argCount != 3)
 {
 return DISP_E_BADPARAMCOUNT;
 }

 // Now, get the input arguments array
 VARIANT* argsArray = (VARIANT*)(dataIn->parray->pvData);

 // Second Step: Check Types of each arg..... Either VT_R8 (floating
 // point value), VT_BSTR (string value) for now...
 if (argsArray[0].vt != VT_R8) return E_INVALIDARG;
 if (argsArray[1].vt != VT_R8) return E_INVALIDARG;
 if (argsArray[2].vt != VT_R8) return E_INVALIDARG;

 // Third step: Get the actual values of each arg by extracting from

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 55

 // the array of input arguments
 register double p1 = argsArray[0].dblVal;
 register double p2 = argsArray[1].dblVal;
 register double p3 = argsArray[2].dblVal;

 // Final step: Perform your function's purpose and return the output
 // value. Because we're returning a number, the return type is VT_R8
 // (double) for now. IADS will convert if necessary..
 dataOut->vt = VT_R8;
 dataOut->dblVal = p1 + p2 + p3;

 return S_OK;
}

When that step is complete, your code should like something this:

18) Now, build the solution. After the build is complete you will notice that we have link errors.

This is a continuation of the Visual Studio bug as noted in steps 11 and 12. To correct the
errors, we will need to add the newly created IadsFunction files into the StdAfx.cpp file.
In the Solution Explorer, click on the StdAfx.cpp file and add the following lines to the
source code:
#include “IadsFunction.h”
#include “IadsFunction_i.c”

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 56

19) At this point, you can begin modifying the code in the function to perform your specific

computation. For more background on how to pass arguments, check their types, and return
values, please refer to the SampleFunction project included with this tutorial. Be sure to read
the comments in the supplied compute functions.

20) After you are done modifying the code, build the Solution. By building your Solution, the
new dll should be registered so you are ready to run and debug it now inside of IADS. The
next section in the tutorial describes how to debug the function.
If you want to use your function on another PC, you will need to register the dll on that
specific PC. Please consult the web for documentation on “regsvr32.exe” and how to perform
this procedure.
If you want to add another function, simply repeat steps. You can add as many functions to
this project as you would like and they will all be accessible through the same dll (i.e.
MyFunction.FunctionName1, …, MyFunction.FunctionNameN). If you wish to create an
entirely new dll and set of functions, you will need to repeat this entire tutorial using a unique
project name.
Note: See section 3.3 to access your new function in IADS.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 57

3.2.1 Debugging your new function in C++ VS2015
1) Bring up your Visual Studio custom function project, and place a break point in your

“Compute” method for testing.

2) Go to Project > [ProjectName] Properties drop down menu in Visual Studio, and in the

dialog that appears pick “Iads.exe” as your “Executable for debug session”. The Iads.exe file
is in your “C:\Program Files\Iads\ClientWorkstation” directory. When you are ready to
continue, press the OK button.

3) Build your Solution again for good measure and click the Go command (or the F5 key).

IADS will start. When IADS starts, pick the configuration file you wish to use and click
Open.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 58

4) After IADS initializes, open up the Configuration Tool and create a derived parameter in the
ParameterDefaults table. If you have already created a derived parameter referencing your
function, simply click on your equation in the ParameterDefaults table.
Notice that when you “tab out” or finish the equation in the Parameter Defaults table, your
function will be called. At this point you can debug all of the argument types and make sure
you are getting the correct items. If you have an argument error and return an error code from
your function, notice that you will get an error message inside of IADS and the equation text
will turn red in color. Once you have checked out the arguments, you can remove the
breakpoint and debug the function with live data.

5) Add a display to the new Analysis Window (i.e. Alphanumeric or Stripchart) as described in
the section 3.3. If your parameter isn’t already attached to a display, simply drag and drop
your newly built derived parameter into the display. Your break point should now hit in the
debugger. You can now step through your computational code if necessary.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 59

3.2.2 Deploying your new function in C++ VS2015
When it comes time to deploy your new function to users on other PCs, you need to

consider a couple of issues. One issue is that your control may require some auxiliary dlls that
are not available on the other systems. If that occurs and the dlls are missing, the function may
not operate. To help minimize this possibility, you must always build your new function dll in
“Release” mode. You should never distribute a function dll that has been compiled under the
“Debug” mode. The debug mode uses libraries that will most certainly be missing on any
machine without Visual Studio installed. Beyond that, it is always best to ‘statically link’ all the
runtime libraries. Also, since we have used ATL to build this function, we will need to statically
link the ATL library as well.
1) In Visual Studio, select the Project > Properties drop down menu. Make sure that the

“Configuration” dropdown is set to “Release”. Under the “Configuration Properties > C/C++
> Code Generation” tier, set the “Runtime Library” to Multi-threaded (/MT).

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 60

2) Once you have made these changes to your project, you should rebuild your ‘solution’. Make

sure once again that your current configuration is set to “Release” and then select the Build >
Rebuild Solution drop down menu option. After this step is complete, your function dll
should be in your project “Release” folder. It should now be ready to deploy on another
system.
The function dll will need to be copied to the other PC and ‘registered’. In order to register
the dll, you will have to run the ‘regsvr32.exe’ program. One easy way to accomplish this is
to double click on the dll in Windows Explorer. When asked what program to execute on the
dll, navigate to the Windows\System32 directory and choose the regsvr32.exe file. This
procedure may be different if the operating system is a 64-bit version. Please consult the
online documentation for specifics.
If the dll fails to register at this point, it most likely failed to statically link the needed dlls.
We can investigate which dlls are missing by using the “Dependency Walker” tool. The
Dependency Walker program is located within the Microsoft Visual Studio\Common\Tools
directory and is named “Depends.exe”. Copy Depends.exe from your development PC to the
target PC and run the program. From the File drop down menu select Open and choose your
function dll. Examine the module list in the bottom window pane. Any missing dependent
dlls should show up with a question mark. Search for those dll names on the net and find out
their purpose. It might help you narrow down what solution setting you have missed. It is
also possible that the missing dll is a private library that you are using, in which case you will
need to either static link or copy that dll to the target machine as well.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 61

3.3 Accessing your new function in IADS
1) Run IADS and login to a test desktop.
2) Press the Configuration button on the IADS Dashboard in the lower right-hand corner of the

screen.

3) In the Configuration Tool dialog left window pane, click the “+” sign next to the “Data”

folder to open it and then select the ParameterDefaults table. This is the location in IADS
where you will build a new derived parameter to test your function.

4) To add a new derived parameter, for speed, simply copy the last line in the table and then

replace our new values as necessary. Select the last row in the table by clicking on the row
number. After the row is selected, press Ctrl+C to copy and then follow that by a Ctrl+V to
paste. You should now see a copy of the last line placed into a new row. When you are done
the table should look something like this:

5) Click into the first column of the new row. As we go, to proceed to the next cell press the

Tab key.
Do not edit the first column, press the Tab key to start editing the second column. In the
second column, type the name of your test parameter “TestMyFunction”. Once you are done
press the Tab key. Now set the type of the parameter; just leave it “float” (i.e. 4-byte floating

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 62

point number). In the future if you are testing an Ascii return value, you will need to set this
type to Ascii.
At this point, keep pressing the Tab key until you arrive at the “DataSourceType” column.
Make sure that is set to “Derived”.
In the next column (DataSourceArgument) you will write your derived equation. Now,
remember from the discussion while creating your function regarding the function name.
Enter the function name followed by the arguments:
MyFunctionGroupName.FunctionName(5.0, 10.0, 30.0)
If you want some variety to your test data, you can use something like this:
MyFunctionGroupName.FunctionName(Rand()*5.0, Rand()*10.0, Rand()*30.0)
Or if you already have specific input parameters in mind, you can do something like this:
MyFunctionGroupName.FunctionName(Param1, Param2, Param3)
In the next field (UpdateRate), type the sample rate that you desire to update your function. If
your equation is based off of other parameters, the sample rate will be automatically
computed and placed into this field when you Tab out of the cell.
Just for safe measure, press the Tab key until you get to the “FilterActive” column. Make
sure that it is set to “No”. We don’t want a filter to be affecting our output at this time, or it
could lead to confusion.

After these steps are complete, click the Save button in the Configuration Tool toolbar.
Your new parameter will now be available in the Parameter Tool.
To run the function, drop the parameter into any display.

6) To build a test display, create an empty Analysis Window by dragging the icon from your
Display Builder onto your Desktop.

7) Now add the “Alphanumeric” display to the Analysis Window you just created using the

same drag-n-drop process; you should see the new display in the Analysis Window when

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 63

complete. The Alphanumeric is a very simple text display that will be easy to view the
equation output results.
Note: Use your cursor to hint on icons on the Display Builder to see which type of display
they are.

8) Ok, now for the parameter attachment to the display. Click on the Parameter Tool button in

the IADS Dashboard (bottom right hand corner of screen). The Parameter Tool dialog will
appear. The Parameter Tool dialog contains a list of all your available parameters in the
configuration. Now all we need to do is find our parameter.

9) In the top text field (quick find box), start typing the parameter name. I used the name

“TestMyParameter”, if you have done the same then type “TestMy”. You will notice that the
window at the bottom opens as soon as it finds your parameter. Keep typing until you see the
full parameter appears. Once it is visible, click on the parameter name and drag the parameter
into the display on the Analysis Window. As soon as you drop the parameter, data should
appear. This is the actual output of your function!

10) After your initial checkout is complete, you can move on to displays such as the Stripchart

that will show history and allow you to examine the data point by point for discrepancies.
Simply repeat the drag-n-drop process using the Stripchart icon (instead of the Analysis
Window icon) in the Display Builder (step 6). Make sure to save the configuration for later.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 64

3.4 Advanced Topics

3.4.1 Initialization and execution of your custom function
In this section, we will review the steps taken during initialization and execution of your

custom function. It is important to be aware how IADS creates your function, as well as how it
calls your function during both the “initialization stage” and the “computation stage”. This will
affect how your Compute function is designed. For reference, you can refer to the
SampleFunction2.h file in the SampleFunction project.

First, let’s examine the initialization stage of your function in general. Each and every
time a derived parameter is created that references your custom function, an instance of your
custom function object is created within the parameter’s computational engine. When the
parameter requires data, this object is then used to produce results as described by your specific
custom code. As a general rule, your custom function object is created each time a user drops a
derived parameter referencing your function into a display, enables and IAP parameter
referencing your function, or edits an equation in the ParameterDefaults table referencing your
function.

Extending this logic, each “instance” of your function called from within IADS is a

completely independent unit of code, akin to a C++ object with member variables and
corresponding code. In essence, each derived parameter is running a fully independent object.
Obviously, this is necessary if your function maintains states such as “last value” or perhaps a
specific “matrix” input file that is required and chosen by the user via the function’s input
arguments. In reality, your function can be called from many different derived parameters
simultaneously, each with their own unique set of input arguments, and possibly computing at
different times within the data. Because of this wide variety of possibilities, be aware that any
reference to “static” or “global” variables should be considered carefully. Global variables will
allow you to “share” information between multiple instances of your function, but you will have
to be very careful about the timing considerations. If you do decide to venture down this path,
please do post your scenario to the IADS Google Group. In general, avoid all use of global
variables and instead, use member variables within the class to hold any necessary state
information.

Now let’s examine the initialization stage in more detail. The function name (i.e. ProgID)
within the derived equation is used to call the “CoCreateInstance” function in the Microsoft
COM libraries to create your object. Once your object is created within IADS, the
“FinalConstruct” method is called. In this method, you can put any initialization needed that is
independent of the input values to your function. This most likely would be limited to things
such as setting member variables to a known initial value.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 65

For instance, say you were building a function allowed a user to specify a number of data

points to “buffer” before computing a result. Of course, you will need a member variable in the
class to hold this buffer. During the FinalConstruct, you would set your member variable buffer
pointer to NULL, but you would not allocate the memory. At this point in the initialization, you
don’t have any of the argument values from the user’s equation, thus you don’t know how large
to allocate the buffer. In the next paragraph, we will discuss a way to solve this issue.

After your FinalConstruct function is called, IADS then calls the “Compute” function
within your object. The main purpose of this first call to your Compute function is to validate the
equation input variables. Understand that the custom function interface is flexible enough to
allow any number of input arguments, and each argument could be a different type (float, ascii,
blob, etc). It is at this exact time, the very first call to your Compute function, which you will
need to check the number and types of your input arguments. In fact, IADS will only listen to
your input argument error return codes on the first call to your function. Since we only want this
code to execute on the first call to the Compute function (and never again), a Boolean member
variable can be used to solve the problem. Simply add a member variable to your class and
initialize it to false in the FinalConstruct.

The secondary purpose of this first Compute function call is to give you an opportunity to

initialize any further variables (such as buffers, etc). Now, inside the Compute function you can
check the Boolean member variable’s value, perform your argument checks and buffer
initialization, then set the member variable so the code is not triggered again. See the example
code snippet below or refer to the SimpleFunction2.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 66

Now that the initialization stage of your function is complete, IADS will call your

function as data is required. This we will refer to as the “computation stage”. For each data value
needed, IADS will call your Compute function with all the necessary input data. Your custom
function will perform the processing and return a single value (the answer). This single answer
will then be returned to the derived parameter, buffered to limit redundant computation, and be
provided to a display (or other consumer).

The sample code in SampleFunction2.h will show you how to handle the various types of
input data (float, string, etc). It will also show you how to return these different types as your
custom function result. This will allow you to create custom functions to return data for almost
any situation. Again, if you need more help on this subject don’t hesitate to post a question to the
IADS Google group. For more advanced topics, such as returning multiple values from your
custom function, please continue to the next section.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 67

3.4.2 Returning multiple results from your custom function
One of the apparent limitations regarding the custom function technique described above

is that it seems unable to return multiple values. As we learned in the previous section, each
input argument that is supplied in the derived equation is sent into the Compute function, the
custom code uses these input values to calculate the result, and then the single result is returned
to IADS. Suppose you had a function with five input arguments, but instead of only outputting a
single result, it outputs five results. This problem can be solved in a simple fairly manner.

When a function needs to output multiple answers in a single computation, we can simply

output an “array” of answers. This array type output is referred to in IADS as a BLOB (binary
large object). Once the array/blob is output from your custom function, it can then be returned as
a blob type parameter and the individual values in the array can be extracted using another
derived function called “Decom”. In summary, we simply return an array of answers (however
many required by the individual function), and then we can extract each value in its own unique
derived parameter using the Decom function. Now, let’s go more into detail about this technique.

First of all, we will need to create an array to output our five results. IADS requires that
this data array be allocated using Microsoft’s “SafeArray” mechanism, so we need to add a
pointer of type SAFEARRAY to our class. In this case, I used “mSA” as the member variable
name.

Now we will need to allocate the memory for this array. Carrying on the initialization

discussion from the last section, we will perform the allocation in the Compute function within
the “first time only” portion of the function. To create the array, we will simply call the
SafeArrayCreateVector function with the type VT_UI1 (byte) and the number of bytes required.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 68

Now let’s focus in on the actual “size in bytes” required by the allocation. To do this

properly, we have to describe in more detail the actual structure of the blob. In a blob, the first 4
bytes of the array is a number specifying the total length of the blob (in bytes).

With this fact in mind, the equation to compute the total length of allocation needed is:

BlobSizeInBytes = sizeof(unsigned __int32) + TotalSizeOfDataPortionInBytes
Or
BlobSizeInBytes = 4 + TotalSizeOfDataPortionInBytes
Or in our example using 5 floating point numbers (4 bytes per number)
BlobSizeInBytes = sizeof(unsigned __int32) + sizeof(float) * 5

At this point, you should have the return blob/array allocated, so now let’s examine how
to update our values in the array and return the results. First, we will need to access the array
pointer within the SAFEARRAY. To do this, we simply call the SafeArrayAccessData function.

Second, let’s set the blob size into the array. To do this, we simply cast the pointer

returned from the SafeArrayAccessData to a type unsigned __int32* and then set the value to the
total number of bytes in the blob. The total number of bytes in our example is 24 (4 bytes for the
size field + 20 bytes for the 5 float values).

Now we can inject our computed results into the array. To do this, we need a pointer to

the type of variable we are going to store. We also need to make sure that the pointer starts at the
proper location in the array (past the BlobSizeInBytes field we just set above).

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 69

Instead of setting each value individually, you may want to simply call another function

to compute the results and pass in the output array pointer. You can then set the return values
from within that function and also keep all of your “calculation” code separate from the
“interface” code. This is a much cleaner approach overall.

After we are complete, this is how the blob layout will appear in memory (zero based

index):

Once you have completed setting the return values into the array, it is now time to return

the blob to IADS. All we need to do here is call SafeArrayUnaccessData, set the dataOut->vt to
VT_ARRAY|VT_UI1 (i.e. an array of bytes), and assign the dataOut->parray variable to our
SafeArray member variable (mSA). To finish the function and return the value to IADS, we
simply return S_OK from the Compute function.

At this point in time, we can now test the function. To proceed, we will need to build a

derived equation to call your new function. We will also need to build derived functions to
extract the results from the blob. Compile your project and clean up any errors. When that is
done run IADS, and open up the Configuration Tool. Open the ParameterDefaults table and add
a parameter that calls your new function.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 70

Notice in the figure above that the “ParamType” column is set to “blob”. This is an

essential step that you can’t forget. If the ParamType is not set to “blob” for the derived
parameter, you will most likely get random return results or zero while attempting to extract the
5 embedded values.

Now, scroll over to the DataSourceType column, and set it to “Derived”. In the

DataSourceArgument column, type an equation that calls your new function. To debug the
equation, you might want to start with a set of known input values (constants). After completing
the equation, save your configuration. We can now actually test the raw output of the custom
function.

At this time, if you wish to see the raw output of your function you can drop your newly
created derived parameter into the “IadsBusMessageDisplays.BlobViewer” display. If you
Right-click on the ActiveX Controls tab of the Display Builder in IADS, you can add the Blob
Viewer to your available displays list. Once that is complete, drag and drop the Blob Viewer
display into an Analysis Window. After the display appears, drop your new derived parameter
into the display. Notice that the Blob Viewer only shows the “payload” portion of your blob. The
size field in the blob has been stripped by IADS. This is to be expected, so don’t be alarmed.

Each 4 bytes in the display is a single 32-bit float return value. Bytes 0 .. 3 show the first
return value, bytes 4..7 show the second, and so on. Note that since our blob has a total of 5
return values, there is an extra 4-byte field at the end containing all CD values. This is an artifact
of the display and not actually in the blob itself. This issue should be fixed in a new version of
IADS soon, so you can safely ignore it for now.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 71

Now that we know our blob is successful, we can continue on and actually extract each

individual value. When this step is complete, we can drop each individual return value into its
own display, or use these return values as an input into another derived equation. After
extraction, it will simply be “yet another derived parameter” and you can treat it like any other
parameter in the system.

To extract the individual values from the blob, we need to create one derived equation per

value. Each derived equation will use the “Decom” function to do the extraction work. Now,
return to the Configuration Tool and ParameterDefaults table to add 5 more derived parameters.
For each derived parameter, you must set the “ParamType” column to the type of the extracted
value. In our case, we packed 5 floating point values (32 bits each) into the blob, so the
ParamType must be set to “float”. If you skip this step you will again most likely get random
values or zero.

At this point we’re almost done. All we need to do is to write the extraction equations
using our blob parameter as the input. Scroll over to the DataSource column and set it to
“Derived”. In the DataSourceArguement column, add the following equation:
Decom(MyMultipleOutParam, 0, 4, 0, 31, 1, TRUE, FALSE)
The equation looks a little cryptic so, let’s go over the Decom function arguments:

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 72

FuntionName: Decom
Arguments: 8
ArgumentList: InputDataParam, ByteOffset, NumBytes, StartBit, StopBit, DataTypeToReturn,
Signed, ReverseBytes
DataTypeToReturn -> { Integer=0, IEEEFloat=1, 1750Float=2, CharString=3, Array=4 }
Signed -> { False=0, True=1 } or just use TRUE/FALSE
ReverseBytes -> { False=0, True=1 }
Example Usage to extract a 4 byte IEEEFloat: Decom(MyIntParameter, 0, 4, 0, 31, 1, TRUE,
FALSE)

Basically, the Decom function is an all-purpose blob field extractor which can convert the
bit patterns extracted into any available type in IADS. With this in mind, let’s focus back on
extracting our values.
Decom(MyMultipleOutParam, 0, 4, 0, 31, 1, TRUE, FALSE)

The first argument of the Decom function is the blob source parameter. In this case, we
use the derived parameter that produces packed answers from our custom function. This should
be the same parameter we dropped into the Blob Viewer above.

The second argument is the “starting byte offset” of the item we wish to extract within
the blob. The byte offset is simply the number of bytes from the start of the payload section of
the blob (remember to now ignore the 4 byte size field). Since we are defining the equation for
the first return value, the starting byte offset will be zero (all the offsets are zero based in this
equation).

The third argument is the number of bytes to extract. In this case, the size of the return
value is 4 (4-byte floating point number). If you had chosen to pack double precision floating
point values (8 bytes each), this argument would be set to 8.

The fourth argument is the “starting bit offset” of the data within bytes identified in
arguments 2 and 3. In this case, we want all the bits so we simply specify bit 0. Likewise, the
fifth argument is the “ending bit offset” of the data identified in arguments 2 and 3. Again, we
want the full 32 bits, so we will specify 31.

The sixth argument is the actual “data type” that we want to return from the function. In
this case it is an IEEE float, so we will specify 1. The seventh and eighth arguments are simply
the signed flag and whether we need to reverse the bytes before data type conversion. We will
specify TRUE and FALSE respectively.

Now that we understand the Decom function in general, let’s simplify our task. Since all
of our return values are all of the exact same type and size, we can generalize our equations as
such:
Decom(MyMultipleOutParam, index*sizeof(returnValue), sizeof(returnValue), 0,
sizeof(returnValue)*8-1, DataType, TRUE, FALSE)
Or for our specific example
Decom(MyMultipleOutParam, index*4, 4, 0, 31, 1, TRUE, FALSE)
Where index goes from 0 to 4 (0 being our first item and 4 being our fifth item)
Using this generalization, we can easily write all of the functions needed:

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 73

ReturnValue1 => Decom(MyMultipleOutParam, 0, 4, 0, 31, 1, TRUE, FALSE)
ReturnValue2 => Decom(MyMultipleOutParam, 4, 4, 0, 31, 1, TRUE, FALSE)
ReturnValue3 => Decom(MyMultipleOutParam, 8, 4, 0, 31, 1, TRUE, FALSE)
ReturnValue4 => Decom(MyMultipleOutParam, 12, 4, 0, 31, 1, TRUE, FALSE)
ReturnValue5 => Decom(MyMultipleOutParam, 16, 4, 0, 31, 1, TRUE, FALSE)

When you are finished writing all of the extraction equations, your ParameterDefaults

table should look similar to the above figure. Make sure to save your configuration upon
completion.

Now, all that is left is to drop the individual parameter into displays and test. If you have
any questions, please don’t hesitate to post them to the IADS Google group.

4. Custom Plugins

4.1 Creating a custom export plugin using C++ VS2015
The SampleExportPluginVS2005 demonstration project is available for download from

the Curtiss Wright IADS web site at the following location:
https://iads.symvionics.com/support/programming-examples/

It provides the necessary starter code for your new project. Once your plugin is complete
and registered on the IADS Client machine, it will appear on the Stripchart’s Data Export menu.
Note- on line 250 of the CSVFile.h in the exportdatagroup function ::OutputDebugString("Failed
to create parameter"); you must change to ::OutputDebugString(L"Failed to create
parameter");The L is needed because of the project settings of Unicode vs multibyte characters.

It is important to build a new project rather than simply reusing the sample project
developed by SYMVIOINCS. The reason for this is that each export plugin project has its own
unique ID called a GUID that is placed in the Windows Registry. If more than one group uses
the sample project for their own, they cannot register on the same machine. Therefore, this
tutorial is presented as you the user are creating a new DLL project called MyExportPlugin.dll.
Further on we will show how to copy and paste code from the sample project so that you can
concentrate solely on your export code and not the interfacing between it and the outer IADS
Client shell. Remember to ensure that the bitness of your project and therefore the compiled
plugin is set to match the bitness of your IADS client (x64, x86).

https://iads.symvionics.com/support/programming-examples/

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 74

1) Open up VS2015 and Select “File -> New->Project”

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 75

2) In the New Project dialog that appears, choose the “Visual C++ > ATL” tier and click the
ATL Project option. At this point, please read the next step before you finish completing the
dialog. There are some important considerations when choosing the proper project name.

3) The project name you choose will become part of the display identifier name (aka ProgID,

see step 10). When it comes time to use your plugin in IADS, users will register your DLL
which automatically insert itself into the correct registry position and then be available from
the IADS Stripchart’s Right-click menu. The menu display name will come from your plugin
(more on this later). Plan on creating many plugins in one “project” (most common and
easier to manage the code). Choose a general project name like “NasaExportPlugins” or
“BA609ExportPlugins”. Think of the project name like a library name, and your plugins are
the books.
Now, in the fields at the bottom of the dialog, enter the project name, location, and the
solution name.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 76

4) After pressing OK, the “ATL Project Wizard” dialog will appear as below.

5) Click the Next button in the Wizard. On the new wizard page, ensure that the “Dynamic Link

Library (DLL)” is checked. Every plugin that runs in IADS is of type DLL. Press the
“Finish” button and the Wizard will create your project.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 77

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 78

6) In the this step we will setup a couple optional project-wide settings that make it easier to
work with provided IADS source code and eliminate warnings. Right-click on the project and
select properties from the menu. Click on the General tab and change the “Character Set”
option to “Use Multi-Byte Character Set”.

7) Again, from the Project/Properties menu select C/C++, Preprocessor and add the following

definition “_CRT_SECURE_NO_WARNINGS”

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 79

8) Now we will add our actual export object. Go to the “Class View” tab in Visual Studio’s

workspace and right-click on the project name. Choose Add > Class. At this point we are
adding our first export plugin

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 80

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 81

9) Upon adding a new class you will be presented with a dialog. Click the ATL tier and ATL
Simple Object as shown below. When that is complete, press the Add button.

10) On the first tab, enter the name of your display in the “Short Name” field. The wizard will fill

out the rest of the tab automatically. For this example, I used “CSVFile” as the short name.
Notice that CSVFile.h and CSVFile.cpp will be created by the wizard and will be the source
code files that you will edit with your own export code. The name entered will be combined
with your project name and will form the final “ProgId” as shown. Press “Next” to continue.
The ProgID is not populated automatically using in VS2015. You must input this manually.
It should be in the form ProjectName.ClassName or in this case
MySampleExportPlugin.CSVFile.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 82

11) On the next tab (“Options”), leave everything as default (Apartment, Dual, Yes, and no other
options checked). Any other dialogue boxes can be left in default.

The remaining options are basically “COM speak”. More information about these options
can be found in the Microsoft documentation. At this point your project can compile and
register your DLL successfully, although it does not do anything yet.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 83

4.1.1 Adding IADS Interface files
The next step is to add the two required IADS interface files, “iads.idl, and

“IadsTime.idl”. These files provide the interface between your export plugin and the running
IADS Client. They can be added anywhere in your project files but I recommend creating a new
folder called “COM” to put them into it. Do not get the .idl files from the Curtiss Wright IADS
website in the folder called iadscomhelperfunction. These .idls are old and do not have all of the
functions necessary to the project. Instead use the. idls provided with the tutorial project. Then
you can create a filter within your project to add the two existing idls.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 84

Now we need to compile the newly added IDL files to generate the output files needed in the
export source code we will be editing. IDL files are compiled by a program called “MIDL”
(Microsoft’s IDL compiler). This is accomplished by setting up the configuration of each file in
the following manner:
1) Right-click on the “iads.idl” file and select Properties.
2) Click on the MIDL tier in the dialog and select the Output option.
3) Change the default names from MyExportPlugin to the name of the IDL file as shown in the

following example.
4) Repeat this step for the “IadsTime.idl file”.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 85

5) The “iads.idl” file includes the “IadsTime.idl file” so you may need to set the path for the

MIDL compiler as shown:

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 86

6) Make sure and compile each file individually to run MIDL and create the needed output files:

Note: iads_p.c and iadstime_p.c and are created but are not used.

7) Add the MIDL generate files to the “stdafx.c” source code file. Adding these files here will
allow access to the needed global variables in your export source code. Once complete,
rebuild to ensure no errors.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 87

8) Add the IADS IDL interface file includes into your IDL file and change your export interface
to derive from IDataExportPlugin instead of IDispatch that was generated by the wizard.
import "IadsTime.idl";

import "Iads.idl"

and
interface ICSVFile : IDataExportPlugin{

9) Just as in step 4 you may need to set the MIDL path property so that your IDL knows to the

location of the “iads.idl” and IadsTime.idl files.

10) At this point all the necessary external files have been added to your project, however it will

not compile until we add the routines that are expected by the IDataExportPlugin interface.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 88

4.1.2 Adding IDataExportPlugin code and your export code
In this section we will add the required routines to that comprise the IDataExportPlugin

interface, including the PerformDataExport routine which is where the entirety of your export
code will reside.
1) The first step is to cut and paste the IDataExportPlugin interface code from the sample

project. The source to copy is in the “CSVFiles.h” file. Cut and Paste the following routines
without modification: OnConnection, OnDisconnection, PerformDataExport,
ExportSelectedDisplay, ExportDataForSingleParameter, and ExportDataGroup into the
CSVFile.h within your project. These routines already include most of the source code you
will need to access the running IADS Client for necessary parameter information. All you
will need to do is replace the actual code that exports to a CSV File with your own output file
type, such as HDF.

2) Modify the string argument in the plugins-add call. This will become the actual display name

that appears in Iads on the Right-click menu.
3) Next add the “mIads” member variable to the public section of your class in CSVFile.h.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 89

4) Finally add the IDataExportPlugin and the IExternalPlugin COM_INTERFACE_ENTRY
entries to the CSVFile.h header file’s COM Map as shown

5) At this point your project should compile without errors or warnings.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 90

4.1.3 Make your DLL self-register for use in IADS
1) In order for your export plugin to be shown in the Stripchart’s Data Export menu, registration

code must be added to your object’s registration script. The easiest way to do this is to cut
and paste the code from the sample project’s CSVFile.rgs into the CSVFile.rgs file from your
solution and change the name of the ProgId to the new project’s ProgId which should have
stayed constant throughout the program, as shown here:

2) After building the solution, you can use regedit to verify that the registration code worked

properly by putting the ProgId into the HKEY_LOCAL_MACHINE/Symvionics,
Inc./IADS/ClientWorkstation/Addins registry hive.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 91

3) Finally, you can run IADS (requires version 7 or greater) and verify that MyExportPlugin
was added to the Stripchart Data Export menu as shown here.
Before you can run Iads in debug mode to verify your plugin was added to the program
please complete the next section, 5.1.4.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 92

4.1.4 Debugging your new plugin in IADS
1) Place a break point in your “PerformDataExport” method for testing. Remember this

function is within CSVFile.h.

In Visual Studio, select Project > Properties drop down menu. In the “Debugging” tier, pick
“Iads.exe” as your “Command”. It is in your “C:\Program Files\Iads\ClientWorkstation”
directory. Build your project and click the “Go” command. IADS will start. If you have built
a x64 plugin you’re the iads client will be in C:\Program
Files\IADS\ClientWorkstation\iads.exe. If you compiled a x86 version you will have to use
the 32 bit Iads client which is located within C:\Program Files
(x86)\IADS\ClientWorkstation\iads.exe.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 93

2) Right-click on the Stripchart and select the Properties option and then the Data Export
option. Select “My Export Plugin” to hit your breakpoint in your code in the
“PerformDataExport routine.

5. Application Programming Interfaces

5.1 IADS Configuration File API
The IADS Configuration data base is an ASCII file that is used by all the IADS software

components for setup, communication, and archiving of both system and user generated meta-
data. It is used and manipulated by both the IADS Server (CDS) and the IADS Client display
workstation (the Client).

This document provides the interface specification necessary in order to manipulate the
Configuration file using the IADS Configuration File Application Programmers Interface (API).
This API was developed to allow outside agencies a programmatic interface in order to create
and manipulate the IADS Configuration database file in a non-real time environment.

This document will cover the contents and structure of the IADS Configuration database
file. In addition, a general discussion of the API’s Parameter Defaults table and the Event
Marker table along with a discussion of the general SQL query interface will be included.

IADS provides a Component Object Model (COM) programming Application
Programmers Interface (API) Dynamic Link Library (DLL) interface to manipulate an IADS
Configuration file. This API provides methods using two different techniques; a Collection
based interface for frequently used tables and a general-purpose SQL interface for complete
access to all internal tables (See Appendix A for list of tables).

The COM DLL and test project are available for download on the Curtiss Wright IADS
website at: https://iads.symvionics.com/support/programming-examples/

5.1.1 Configuration Interface
The Configuration interface provides all the methods needed to manipulate the

Configuration file. This is the API starting-point for all Collection interfaces that are described
in section 5.1.2. Following is a table of the methods available:

Method Return Argument Description
Open In BSTR Open an existing configuration file with

create backup option
Create In BSTR Create a new configuration file with open

option
 In VARIANT_BOOL Set to true to Open the file after creation

Save None VOID Commit and save changes from open
configuration file

Close In VARIANT_BOOL Close configuration file with save option
VersionFromFile In BSTR Configuration file name and path

 Out BSTR* Version number
Version Out int* return version of currently opened

configuration file, (-1) indicates no
version has been set yet

Version In int put version of configuration file to create
OpenMessageLog In BSTR Log error messages to a file

https://iads.symvionics.com/support/programming-examples/

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 94

 In VARIANT_BOOL True to delete existing log
ParameterSets Out IParameterSets** Get the ParameterSets collection
ParameterDefaults Out IParameterDefaults** Get the ParameterDefaults collection
Events Out IEvents** Get the Events collection
Thresholds Out IThresholds** Get the Thresholds collection
Testpoints Out ITestpoints** Get the Testpoints collection
Selections Out ISelections** Get the Selections collection
PlannedTestPoints Out IPlannedTestPoints** Get the Planned Test Points collection
Query In BSTR Query interface. Keywords are: Select,

Update, Delete, and Create. Returns an
array of BSTR results if applicable

 Out VARIANT* Array of query results

5.1.2 Collection Interfaces
Seven collection interfaces are provided as a layer on top of the SQL engine due to their

frequent use. They are the ParameterSets, ParameterDefaults, EventMarkers, Selections,
Thresholds, Testpoints and PlannedTestPoints.

Appendix B has the value for IADS defined data types and enumerations. Following is a
description of each of the collection interfaces

ParameterSets Collection
IADS allows multiple Parameter Sets to be defined and enabled for processing. The

ParameterSets collection is used to return ParameterSet Item which in turn contains a
ParameterDefaults collection (see the “ParameterDefaults Collection“ section below) . Following
are the functions in the ParameterSets collection:

Method Return Arguments Description
Count Out long* Gets the number of IParameterSet Items within the

collection.
Add In BSTR Add a new IParameterSet Item to this collection. Add a

ParameterSet by name
 In BSTR The group name of the IParameterSet Item to add to

this collection.

 In VARIANT_BOOL The active flag of the IParameterSet Item to add to this
 Out IParameterSet** Return value reference to the newly added

IParameterSet Item.
Remove In VARIANT Remove IParameterSet object by index or name from

this collection

RemoveAll None VOID Remove all IParameterSet Items from this collection.
Item In VARIANT Return an IParameterSet Item by name (string) or

index number (0..Count). IndexOrName
 Out IParameterSet** Return value, reference to the specified IParameterSet

Item. Returns a Set object by name (string) or index
number (0..Count)

SaveTable None VOID Save changes to this Collection

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 95

ParameterSet Item
The Parameter Set item contains the Set name, the Group name, and an IsActive boolean

if the set is active in IADS. It also contains the ParameterDefaults collection for further
processing of Parameter information.

Method Return Arguments Description
SetName Out BSTR* Get the Parameter Set name
SetName In BSTR Set the Parameter Set Name
Group Out BSTR* Get Parameter Group name
Group In BSTR Set Parameter Group name
IsActive Out VARIANT_BOOL* Get Parameter Set Active
IsActive In VARIANT_BOOL Set Parameter Set is active
ParameterDefaults Out IParameterDefaults* Get Parameter Defaults collection

ParameterDefaults Collection
The ParameterDefaults Collection holds all the available Parameter Items. It returns

ParameterDefault Item which contains all the available properties for each parameter.
Method Return Arguments Description
Count Out long* Gets the number of IParameterDefault items within the

collection.
Add In BSTR Add a new IParameterDefault Item to this collection, this is

the Parameter Name
 In IadsDataType This is the inherent type of the parameter
 In Double This is the sample rate of the parameter
 Out IParameterDefault*

*
Return value, reference to the newly added IParameterDefault
Item.

Remove In VARIANT IParameterDefault Item by index or name from this collection
RemoveAll None VOID Remove all IParameterDefault items from this collection.
Item In VARIANT Return an IParameterdefault Item by name (string) or index

number
SetName In BSTR* Return the IParameterSet name that this parameter belongs to
SaveTable None VOID Save changes to this collection

ParameterDefault Item
The Parameter item is returned from the ParameterDefaults collection. Following are the

Methods in the ParameterDefaults collection along with their return value, or input argument and
description

Method Return Argument Type Description
Name Out BSTR* Get parameter name
Name In BSTR Set parameter name
DataType Out IadsDataType* Get parameter data type
DataType In IadsDataType Set parameter data type
Group Out BSTR* Get parameter group name
Group In BSTR Set parameter group name
SubGroup out BSTR* Get parameter subgroup name
SubGroup In BSTR Set parameter subgroup name
ShortName Out BSTR* Get parameter short name
ShortName In BSTR Set parameter short name
LongName Out SBSTR* Get parameter long name
LongName In BSTR Set parameter long name

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 96

Units Out BSTR* Get parameter units name
Units In BSTR Set parameter units name
Color Out OLE_COLOR* Get color value
Color In OLE_COLOR Set color value
Width Out int* Get pen width
Width In int Set pen width
DataSourceType Out IadsDataSourceType* Get the data source type
DataSourceType In IadsDataSourceType Set data source type
DataSourceArgument Out BSTR* Get the data source argument
DataSourceArgument In BSTR Set data source argument
SampleRate out double* Get the data sample rate
SampleRate In double Set data sample rate
LoadLimitNegative Out double* Get negative design load limit
LoadLimitNegative In double Set negative design load limit
LoadLimitPositive Out double* Get positive design load limit
LoadLimitPositive In double Set positive design load limit
TimeScaleRangeMin Out double* Get time scale range min
TimeScaleRangeMin In double Set time scale range min
TimeScaleRangeMax Out double* Get time scale range max
TimeScaleRangeMax In double Set time scale range max
TimeCaleAuto in double Not currently used in IADS
TimeScaleAuto Out IadsOnOrOff* Get time scale auto (Not currently

used by IADS)
TimeScaleAuto In IadsOnOrOff Set time scale auto (not currently

used by IADS)
FreqScaleRangeMin Out double* Get frequency scale range Max
FreqScaleRangeMin In double Set frequency scale range Min
FreqScaleRangeMax Out double* Get frequency scale range max
FreqScaleRangeMax In double Set frequency scale range max
FreqScaleAuto In double Not currently used in IADS
FreqScaleAuto Out IadsOnOrOff* Get frequency scale auto (not

currently used by IADS)
FreqScaleAuto In IadsOnOrOff Set frequency scale auto (not

currently used by IADS)
WarningThreshRangeMin Out double* Get warning threshold min range
WarningThreshRangeMin In double Set warning threshold range min
WarningThreshRangeMax Out double* Get warning thresh range max
WarningThreshRangeMax In double Set Get warning thresh range max
WarningThreshColor Out OLE_COLOR* Get Warning Threshold color
WarningThreshColor In OLE_COLOR Set warning threshold color
WarningThreshLabel Out BSTR* Get warning threshold label
WarningThreshLabel In BSTR Set warning threshold label
WarningThreshLineWidth Out int* Get warning threshold line width
WarningThreshLineWidth In int Set warning threshold line width
AlarmThreshRangeMin Out double* Get alarm threshold range min
AlarmThreshRangeMin In double Set alarm threshold range min
AlarmThreshRangeMax Out double* Get alarm threshold range max
AlarmThreshRangeMax In double Set alarm threshold range max
AlarmThreshColor Out OLE_COLOR* Get alarm threshold color
AlarmThreshColor In OLE_COLOR Set alarm threshold color
AlarmThreshLabel Out Out BSTR* Get alarm threshold label
AlarmThreshLabel In BSTR Set alarm threshold label
AlarmThreshLineWidth Out int* Get alarm threshold line width

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 97

AlarmThreshLineWidth In int Set alarm threshold line width
FilterActive Out IadsYesOrNo* Get filter active
FilterActive In IadsYesOrNo Set filter active
FilterAlgorithm Out IadsFilterAlgorithm* Get filter algorithm
FilterAlgorithm In IadsFilterAlgorithm Set filter algorithm
FilterPassType Out IadsFilterPassType* Get filter pass type
FilterPassType In IadsFilterPassType Set filter pass type
FilterLowCutoff Out double* Get filter low cutoff
FilterLowCutoff In double Set filter low cutoff
FilterHighCutoff Out double* Get filter high cutoff
FilterHighCutoff In double Set filter high cutoff
FilterOrder Out int* Get filter order
FilterOrder In int Set filter order (1..8)
WildPointRangeMin Out double* Get wild point range min
WildPointRangeMin In double Set wild point range min
WildPointRangeMax Out double* Get wild point range max
WildPointRangeMax In double Set wild point range max
WildPointCorrectionMethod Out IadsDataCorrectionMethod* Get wild point correction method
WildPointCorrectionMethod In IadsDataCorrectionMethod Set wild point correction method
WildPointCorrectionValue Out double* Get wild point correction value
WildPointCorrectionValue In double Set wild point correction value
SignChange Out IadsYesOrNo* Get sign change
SignChange In IadsYesOrNo Set sign change
NullCorrection Out IadsNullCorrection* Get null correction type
NullCorrection In IadsNullCorrection Set null correction, depends on data

source type if TPP(nullOn or
nullOff), if derived(equationResult,
equationInput

NullBaseline Out double* Get null basline value
NullBaseline In double Set null baseline value
NullBias Out double* Get null base value that is added to

the parameter value
NullBias In double Set null baseline value that is added

to the parameter value
NullGroup Out IadsNullGroup* Get Parameter Null group
NullGroup In IadsNullGroup Set Parameter Null group
SpikeDetectionMethod Out IadsSpikeDetectionMethod* Get spike detection method
SpikeDetectionMethod In IadsSpikeDetectionMethod Set spike detection method
SpikeCorrectionMethod Out IadsDataCorrectionMethod* Get spike correction method (last

good value or none
SpikeCorrectionMethod In IadsDataCorrectionMethod Set spike correction Method (last

good value or none)
SpikeChangeLimit Out double* Get spike change limit
SpikeChangeLimit In double Set spike change limit
ComputeType Out IadsComputeType* Get default compute type
ComputeType In IadsComputeType Set default compute type
ExcitationSignal Out BSTR* Get default excitation parameter
ExcitationSignal In BSTR Set default excitation parameter
WindowType Out IadsWindowType* Get window type
WindowType In IadsWindowType Set window type
Alpha Out IadsAlpha* Get alpha value for Kaiser-Bessel

Window

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 98

Alpha In IadsAlpha Set alpha value for Kaiser-Bessel
window type

AveragingMethod Out IadsAverageMethod* Get averaging method, (avgTime
not implemented

AveragingMethod In IadsAverageMethod Set averaging method, (avgTime not
implemented)

Overlap Out double* Get overlap value (0.0 >= value <
100.0

Overlap In double Set overlap value (0.0 >= value <
100.0

BlocksPerAverage Out int* Get blocks per average (1..5)
BlocksPerAverage In int Set blocks per average (1..5)
BlockSize Out IadsBlockSize* Get block size - (64 bytes..64K

bytes
BlockSize In IadsBlockSize Set block size - (64 bytes.. 64K

bytes
StringLookupTable Out BSTR* Get string lookup table
StringLookupTable In BSTR newVal Set String Lookup table
Delete Out VARIANT_BOOL* Get Parameter deletion setting
Delete In VARIANT_BOOL Set parameter deletion setting

Events Collection
Method Return Arguments Description
Count Out long* Gets the number of IEvent Items within the collection.
Add In BSTR Add a new IEvent Item to this collection by parameter name.
 In BSTR IRIG time at threshold break.
 Out IEvent** Return value reference to the newly added IEvent Item.
Remove In VARIANT Remove IEvent Item by index or name from this collection
RemoveAll None VOID Remove all IEvent Items from this collection.
Item In VARIANT Return an IEvent Item by name (string) or index number

(0..Count). IndexOrName
 Out IThreshold** Return value, reference to the specified IEvent Item. Returns a

Set object by name (string) or index number (0..Count)
SaveTable None VOID Save changes to this Collection

Event Item
Method Return Argument Description
Group Out BSTR* Get the group name
Group In BSTR Set the group name
SubGroup Out BSTR* Get subgroup name
SubGroup In BSTR Set subgroup name
User Out BSTR* Get user name
User In BSTR Set user name
IrigTime Out BSTR* Get IRIG time
IrigTime In BSTR Set IRIG time
Name Out BSTR* Get the comment
Name In BSTR Set a comment
PropBag Out BSTR* Get property bag
PropBag In BSTR Set the property bag

Thresholds Collection

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 99

Method Return Arguments Description
Count Out long* Gets the number of IThreshold Items within the collection.
Add In BSTR Add a new IThreshold Item to this collection by parameter

name.
 In BSTR IRIG time at threshold break.
 In IadsThresholdLevel Threshold Level at the break
 Out IThreshold** Return value reference to the newly added IThreshold Item.
Remove In VARIANT Remove IThreshold Item by index or name from this collection
RemoveAll None VOID Remove all IThreshold Items from this collection.
Item In VARIANT Return an IThreshold Item by name (string) or index number

(0..Count). IndexOrName
 Out IThreshold** Return value, reference to the specified IThreshold Item.

Returns a Set object by name (string) or index number
(0..Count)

SaveTable None VOID Save changes to this Collection

Threshold Item
Method Return Argument Description
Group Out BSTR* Get the group name
Group In BSTR Set the group name
SubGroup Out BSTR* Get subgroup name
SubGroup In BSTR Set subgroup name
User Out BSTR* Get user name
User In BSTR Set user name
Level Out IadsThresholdLevel* Get Threshold Level
Level In IadsThresholdLevel Set Threshold Level
AnalysisWindowName Out BSTR* Get property bag
AnalysisWindowName In BSTR Set the property bag
DisplayType Out BSTR* Get property bag
DisplayType In BSTR Set the property bag
ParameterName Out BSTR* Get property bag
ParameterName In BSTR Set the property bag
IrigTimeAtBreak Out BSTR* Get IRIG time at threshold break
IrigTimeAtBreak In BSTR Set IRIG time at threshold break
ValueAtBreak Out double* Get value at time break
ValueAtBreak In double Set IRIG time
DisplayName Out BSTR* Get display name
DisplayName In BSTR Set the display name
Comment Out BSTR* Get the comment
Comment In BSTR Set a comment
PropBag Out BSTR* Get property bag
PropBag In BSTR Set the property bag

Selections Collection
Method Return Arguments Description
Count Out long* Gets the number of ISelection Items within the collection.
Add In BSTR Add a new ISelection Item to this collection by parameter

name
 In BSTR IRIG time of selection.
 In Double Value of selection
 Out ISelection** Return value reference to the newly added ISelection Item.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 100

Remove In VARIANT Remove ISelection Item by index or name from this
collection

RemoveAll None VOID Remove all ISelection Items from this collection.
Item In VARIANT Return an ISelection Item by name (string) or index number

(0..Count). IndexOrName
 Out ISelection** Return value, reference to the specified ISelection Item.

Returns the Item by name (string) or index number
(0..Count)

SaveTable None VOID Save changes to this collection

Selection Item
Method Return Argument Description
Group Out BSTR* Get the group name
Group In BSTR Set the group name
SubGroup Out BSTR* Get subgroup name
SubGroup In BSTR Set subgroup name
User Out BSTR* Get user name
User In BSTR Set user name
IrigTime Out BSTR* Get IRIG Time
IrigTime In BSTR Set IRIG Time
Value Out double* Get Selection Value
Value In double Set Selection Value
Parameter Out BSTR* Get Parameter name
Parameter In BSTR Set Parameter Name
Filter Out BSTR* Get Filter
Filter In BSTR Set Filter
Display Out BSTR* Get Display Name
Display In BSTR Set Display Name
Comment Out BSTR* Get Comment
Comment In BSTR Set Comment
PropBag Out BSTR* Get property bag
PropBag In BSTRS Set the property bag

TestPoints Collection
Method Return Arguments Description
Count Out long* Gets the number of ITestpoint Items within the collection.
Add In BSTR Add a new ITestpoint Item to this collection by test point string.
 In BSTR The start time of the test point
 In BSTR The stop time of the test point
 Out ITestpoint** Return value reference to the newly added ITestpoint Item.
Remove In VARIANT Remove ITestpoint Item by index or name from this collection
RemoveAll None VOID Remove all ITestpoint Items from this collection.
Item In VARIANT Return an IThreshold Item by name (string) or index number

(0..Count). IndexOrName
 Out IThreshold** Return value, reference to the specified IThreshold Item. Returns

the Item by name (string) or index number (0..Count)
SaveTable None VOID Save changes to this Collection

TestPoint Item
Method Return Argument Description
Group Out BSTR* Get the group name

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 101

Group In BSTR Set the group name
SubGroup Out BSTR* Get subgroup name
SubGroup In BSTR Set subgroup name
User Out BSTR* Get user name
User In BSTR Set user name
Testpoint Out BSTR* Get testpoint
Testpoint In BSTR Set user name
Description Out BSTR* Get testpoint
Description In BSTR Set user name
Maneuver Out BSTR* Get testpoint
Maneuver In BSTR Set user name
StartTime Out BSTR* Get Start time
StartTime In BSTR Set Start Time
StopTime Out BSTR* Get Stop time
StopTime In BSTR Set Stop Time
PropBag Out BSTR* Get property bag
PropBag In BSTR Set the property bag

PlannedTestPoints Collection
Method Return Arguments Description
Count Out long* Gets the number of IPlannedtestpoints Items within the

collection.
Add In BSTR Add a new IPlannedTestpoint Item to this collection by

unique testpoint string
 Out IPlannedTestpoint** Return value reference to the newly added

IPlannedTestpoint Item.
Remove In VARIANT Remove IParameterSet object by index or name from

this collection
RemoveAll None VOID Remove all IParameterSet Items from this collection.
Item In VARIANT Return an IParameterSet Item by name (string) or

index number (0..Count). IndexOrName
 Out IParameterSet** Return value, reference to the specified IParameterSet

Item. Returns a Set object by name (string) or index
number (0..Count)

SaveTable None VOID Save changes to this Collection

PlannedTestPoint Item
Method Return Argument Description
Group Out BSTR* Get the group name
Group In BSTR Set the group name
SubGroup Out BSTR* Get subgroup name
SubGroup In BSTR Set Subgroup name
User Out BSTR* Get User name
User In BSTR Set User name
Testpoint Out BSTR* Get Testpoint
Testpoint In BSTR Set Testpoint (This is a user defined format)
Description Out BSTR* Get Description
Description In BSTR Set Description
Maneuver Out BSTR* Get Maneuver name
Maneuver In BSTR Set the Maneuver name
AircraftConfig Out BSTR* Get the Aircraft Configuration (This is a user defined

setting)

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 102

AircraftConfig In BSTR Set the Aircraft Configuration
FlightConditions Out BSTR* Get Flight Conditions (This is a user defined setting)
FlightConditions In BSTR Set the Flight Conditions
PredictedResults Out BSTR* Get the Predicted Results
PredictedResults In BSTR Set the Predicted Results
PropBag Out BSTR* Get Property bag
PropBag In BSTR Set the Property bag

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 103

5.1.3 General Purpose Query Interface
From the IadsConfig API level general purpose queries can be made. This allows full

access to the Configuration file without using the Collection interfaces as detailed above.
Intimate knowledge of the File structure is required. Use caution with this routine, especially
with hierarchical tables, as entries made will most likely need to be made in other relational
tables as well
Query string construction has the following form:
“keyword <field name> from <table name> where <qualifiers>”
Keywords are:
1. Select - Selected values are returned in BSTR array
2. Update - Query user passes in a string to update in the configuration file.
3. Delete - Deletes one or more rows in a configuration file
4. Create - Create a table in the configuration file.
Field names: These are directly from the Configuration file; therefore, the query user must have
knowledge of its table construction: Multiple field names are separated by commas. A wild card
of '*' can be used in which case the entire row is returned with individual field values delimited
by the '|' vertical pipe character.
Table name: Table names are those that are in the configuration file, therefore the query user
must have knowledge of its construction.
Qualifiers: Qualifiers take the form of: “field name = value”. All values of type string must be
enclosed in single quotes, example: Group = 'Loads'.
Query Examples
1) Select * from Desktops - Get all fields for all entries in a particular table.
2) Select * from Desktops where Group = 'Flutter' - Get all fields for selected entries using a

"where" clause.
3) Select * from Desktops where Group = 'Flutter' && AnalysisWindowName =

'DoubleIntTest' - Get all fields for selected entries using a compound "where" clause.
4) Select SubGroup from Desktops where Group = 'Flutter' && AnalysisWindowName =

'DoubleIntTest' - Get one field for selected entries using a compound "where" clause.
5) Select System.RowNumber from Desktops - Get one field for selected entries using a

compound "where" clause. Note usage of "System.RowNumber. This selects a row based
on its unique Id (be careful with this).

6) Update BogusDesktops set * = a|b|c|d|e - Modify all fields in all rows in a table
7) Update BogusDesktops set * = a|b|c|d|e where Group = 'Flutter' - Modify all fields in the

specified row(s) based on a match in a single field.
8) Update BogusDesktops set SubGroup = 'Pat' where Group = 'FQ' - Modify a single field in

a specified row.
9) Create table BogusTable (Group String, X Int, Y Int, AutoScale list(True, False),

Classification list(high,medium,low)) - Creates a table called BogusTable with fields as

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 104

shown above. Note usage of the list type. This will create a dropdown list in the
configuration tool for easier user entry.

10) Delete * from BogusDesktops where Group = 'Flutter' - Delete every row from the
BogusDesktops table where the field value is Flutter

11) Delete * from BogusDesktops where System.RowNumber = 3 - Delete using "built-in"
unique system id or row number

5.2 IADS Data File API
Provides a COM API DLL interface to access IADS data directly from an IADS storage

file (.iadsData).
The Data Tester test program was written to test as much of the Data File Interface as

possible; it creates all formats of the periodic type and several for the aperiodic and multi-
periodic formats. The program will read and display IADS data in a console window and is for
demonstration purposes only.

The COM DLL, test project, on-line reference and Data Tester test program are available
for download on the Curtiss Wright IADS website at
https://iads.symvionics.com/support/programming-examples/.

https://iads.symvionics.com/support/programming-examples/

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 105

6. IADS Automation Interfaces

6.1 IADS Data Export Scripts
Provides the following IADS Automation Scripts:

1) Data Export - This is an event-triggered data export. You define your event triggers in the
code, and the script will attach to an already running IADS client and export parameters that
you have specified in the script to a CSV file. No GUI for this one, you have to tweak all
your settings in the code.

2) DataGroup Summary - Attaches to a client that is already running; takes the parameters from
a specified data group and exports them to an Excel spreadsheet and PowerPoint slides based
on start/stop times specified in the Test Point log.

3) IADS Data Move - Moves parameters from a specified input directory to a specified output
directory. Command-line driven.

4) Time Slice Export - Connects to an already running IADS client and provides a dialog that
allows you to select parameters from the currently running config file; specify a start/stop
time, and a destination directory to export them to. Exports the data to a CSV file.

The DataExport.vbs, DataGroup Summary.vbs, IadsDataMove.zip, TimeSliceExport.zip
and on-line reference are available for download on the Curtiss Wright IADS website at
https://iads.symvionics.com/support/programming-examples/.

6.2 IADS Data File Reader in Visual Basic
Provides the IADSDataFileInterface dialog (Project1.exe) to read IADS data directly

from an IADS data file and export to a CSV file.
The IadsDataFileInterface.dll must be registered to use the reader.
The VBDataTester.zip (Project1.exe) and IADSDataFileInterface.dll are available for

download on the Curtiss Wright IADS website at
https://iads.symvionics.com/support/programming-examples/ .

https://iads.symvionics.com/support/programming-examples/
https://iads.symvionics.com/support/programming-examples/

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 106

7. IADS Data Processing

7.1 IADS Real Time Data Source Interface
This documentation describes the interface required of a real time data source to send

data to the IADS Server (CDS); the connection, protocol and format requirements.
The test project is available for download on the Curtiss Wright IADS website at:

https://iads.symvionics.com/support/programming-examples/ Data Processing Examples: 1.
IADS Data Source

The purpose of this instruction is to describe how to develop an interface that feeds data
to IADS; and how to test and troubleshoot the development effort. This development kit includes
an example data source program with source code.

Section 7.1.1 provides a specification describing the overall data source architecture
including connection, protocol and format requirements along with rules on providing data.
Section 7.1.2 describes an example data source program that is available as part of the
development kit which can be useful for further understanding and guidance. Section 7.1.3
includes instructions on how to use an IADS product named RT Station to check out the
interconnections between the data source and IADS Server along with viewing the data on an
IADS Client display. Section 7.1.4 gives tips on troubleshooting potential problems that may
arise during development and checkout.

7.1.1 Data Source Specification
Data Source Architecture

The real time data source architecture is one that provides data packets to the IADS
Server at as close to fixed rates as possible. Since IADS is a data driven architecture the more
consistent the rate the packets are fed to the IADS Server the better to provide a smooth data
flow. The recommended data packet frequency is 10-20 milliseconds. To compensate for
network and/or other system level delays a capability to buffer up data packets is recommended
at the data source to provide some flexibility for potential data delivery delays in order to prevent
data overflow/loss between the data source and the IADS Server. This buffering architecture has
the advantage of allowing for some “rubber-banding” in the downstream processing without
losing data at the data source.
Data Source Socket Interface

To communicate properly with the IADS Server, the data source must be set up as a
TCP/IP socket server. The data source will first perform a handshake that specifies the byte order
and format of the packets then will begin sending data packets. This protocol is a one-way
communication going from data source to IADS Server. After the initial handshake the data
source will continually send data packets (preferably in a blocked write mode) to the IADS
Server. These messages are recommended to be sent at a frequency of 10-20 milliseconds. The
message size can vary between data packets so in order to maintain the packet rate you may need
to send packets containing only time parameter samples in cases where data parameter rates are
low.

Typical usage of the data source is to keep the source running and allow the IADS Server
to perform multiple connections over an extended period of time. In order to accomplish this

https://iads.symvionics.com/support/programming-examples/

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 107

functionality another feature of the data source should be to allow reconnections from the IADS
Server without having to restart the data source application.
Handshake Protocol

Upon initial connection to the data source, the IADS Server expects to receive two
handshake messages describing aspects of the data source environment. First a one-byte message
is expected that defines the byte order of all subsequent messages. The codes to specify the byte
order are as follows:
Little Endian = 1
Big Endian = 2

Secondly a four-byte message is expected defining the code of the format of all
subsequent data packets. The data packets must not vary from this specified format and must also
conform to formatting specifications as defined in the next two sections. There are currently two
supported packet formats with the following codes:
Tag/value pair format = 100
Tag/size/value format = 101
Note: Tag/size/value format only supports Little Endian byte order.
Data Packet Header Format

Each data packet from the data source has a header that contains various record and status
information followed by a body that contains tag/value pairs. Each header contains 8 32-bit
fields (32 bytes) described as follows:

Field Name Description

Field 0 Message Size Total size of header and body (Field 0 non-inclusive)

Field 1 Sequence Number Message sequence counter

Field 2 Packets Sent Total number of data packets sent to IADS Server

Field 3 Data loss/Overflow Total number of data loss/overflow occurrences

Field 4-7 Dummy Currently unused fields

Except for field 0 (Message Size) and field 1 (Sequence Number) all other fields are
essentially unused or optional fields used to describe additional data source status.

Calculating the Message Size field consists of adding the remaining portion of the header
(28 bytes) to the entire size of the packet body. For example, if the packet body size is 1200
bytes then the Message Size field should contain the value 1228.
See Appendix C for a block diagram of the message format including the header.
Data Packet Body Format

Currently there are two supported data packet body formats. The first packet body format
(code 100) contains sets of tag/value pairs consisting of 16-bit tag fields and 32-bit value fields.
A tag is an integer that uniquely identifies a particular parameter. The values are the data
associated with each tag instance. The format of a single tag/value pair in 32-bit form is as
follows:
Tag1 (16-bit)

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 108

Tag2 (16-bit)
Value1 (32-bit)
Value2 (32-bit)

The body consists of (n) consecutive sets of these tag/value pairs. Therefore, the size of
each message will consist of 28 bytes of header (message size field is non-inclusive) plus (n)
times 12 bytes of body. This also means there are a total of (n) times 2 parameters per message.

The second supported packet body format (code 101) contains sets of tag/size/value sets
consisting of 32-bit fields containing the integer parameter identifier followed by the data unit
size in bytes followed by the data value. The format of a single tag/size/value set is as follows:
Tag (32-bit)
Size (32-bit)
Value (number of bytes specified in Size field)

The body consists of (n) consecutive sets of these tag/size/value sets. Therefore, the size
of each message will consist of 28 bytes of header (message size field is non-inclusive) plus (n)
times (8 + size) bytes of body where size is the size in bytes of the data associated with each
particular tag. Currently this interface does not support variable size data for a particular tag.
This also means there are a total of (n) parameters per message.

See Appendix C for a block diagram of the supported message formats.
Packet Content Notes

A primary requirement for parameters contained within the stream of data packets is that
the order of the data samples coming out of the data source be chronological (time sequential) for
a particular parameter. Each periodic parameter (i.e. parameter with sample rate greater than 0) is
expected to have a consistent interval (with allowances for some minor rubber-banding) in the
data stream correlating to the sample rate specified in the parameter definition file. No pre-
alignment of data across parameters is assumed (i.e. no manipulation of the data is required prior
to entering IADS).

Time parameters are required to be part of the data stream. Ideally the sample rate of the
time parameters should be greater than or equal to the highest sample rate of the data parameters.
The time words should be interleaved in the data packets such that each sample of a particular
data parameter has a unique time stamp. The following is an example that illustrates a valid
time/data sequence inside a packet where P1 and P2 are samples from 2 different data parameters
and P2 is half the rate of P1. T1 and T2 are the upper and lower words respectively from the time
parameter (see the section on “Time Parameters” below for more detail on time word format):
T1/T2/P1/T1/T2/P1/P2/T1/T2/P1/T1/T2/P1/P2/T1/T2/P1/T1/T2/P1/P2…

Low sample rates on time parameters can have side effects. Since IADS is basically a
data driven system the update rates of the IADS Client displays can be affected by the sample
rate of the time parameters. Time parameter rates lower than about 50 samples per second may
show a ‘stuttering’ behavior on the client displays. See the section on “Time Parameters” below
for more detail on time parameters.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 109

7.1.2 IADS Server Setup
In order for the IADS Server to operate properly a parameter definition file must exist

that provides information on how to process the packet contents. The parameter definition file is
also known as the PRN file and typically has a .prn extension on the file name but is not
required. The details of that file are described as follows:
Parameter Definition File

The IADS Server requires a file to exist prior to system startup that defines information
on parameters expected to be received in the data stream from the data source. The set of
information includes tag id, parameter name, sample rate and data format (e.g. integer, float,
unsigned integer, etc.) See Appendix B for typical entries in the file.

The first field corresponds to an integer tag identifier to uniquely associate a value with a
parameter in the data stream. The second field represents the name of the parameter as specified
in the IADS configuration file ParameterDefaults table. The third field corresponds to the
expected sample rate in samples per second that the parameter will be received from the data
source. The sample rates can be integer or floating point. Sample rates of 0 or 0.0 denote
aperiodic data. The next field identifies the format representation of the value coming from the
data source. The format codes currently supported are as follows:

Data Format Description Code Value

32-bit integer Integer 0
32-bit unsigned integer Discrete 1
32-bit single precision floating point Float 2
64-bit integer Long 3
64-bit unsigned integer Ulong 4
64-bit double precision floating point Double 5
Binary objects Blob 7

BLOB data can be identified as binary data of any size aligned on byte boundaries.
There is also extended information that can be added to parameter definition entries. The

general format of these extended entries is as follows:
Key = Value

Key is a reserved keyword that is recognized by the IADS Server to represent a specific
piece of parameter information and Value is the value associated with the keyword. Currently
there are two supported extended information keywords: “DataSize=n” and “SystemParamType
= type” the latter of which is described further in Section 7.1.3.

Currently the IADS Server does not support variable sized samples within a single tag.
See Appendix D for an example Parameter Definition file.

System Parameters

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 110

Following are parameters needed for the IADS Server to fully operate properly. These are
system-based parameters used for processing other data parameters or for presenting status
information. There are two types of system parameters, time parameters and decom status
parameters. Time parameters are required to be included as part of the overall parameter set but
decom status parameters are optional. The following subsections describe these parameter types:

Time Parameters
Time is represented as a 64-bit word in units of nanoseconds consisting of the time offset

from the beginning of the year. As an example, if IRIG time is set at 001:01:00:00.000 then the
64-bit time value would be 3600000000000 (i.e. one hour offset from the beginning of the year).
The protocol required to transfer time via the data packets consists of splitting the time word into
two 32-bit words. The upper 32-bit word must be identified in the parameter definitions file by
appending the SystemParamType = MajorTime to the entry of the parameter to be used as the
high order time word. The lower 32-bit word must be identified by appending SystemParamType
= MinorTime to the parameter definition file entry of the parameter to be used as the low order
time word. The sequence of the time words in the packet should be the upper time word followed
by the lower time word. See the data flow example in the previous section “Packet Content
Notes” where the upper word is represented as T1 and the lower word is represented as T2.

Ideally the sample rate of the time parameters should be greater than or equal to the
highest sample rate of the data parameters. The time words should be interleaved in the data
packets such that each sample of a particular data parameter has a unique time stamp.

Low sample rates on time parameters can have side effects. Since IADS is basically a
data driven system the IADS Client display update rates can be affected by the sample rate of the
time parameters. Time parameter rates lower than about 50 samples per second may show a
‘stuttering’ behavior on the client displays.

Decom Status Parameters
Decom Status is another system parameter used by the IADS Server to obtain data stream

information such as sync loss. This parameter is identified in the parameter definition file by
using the extended information property “DecomStatus” (see Appendix D for the data format of
this parameter). The “DecomStatus” parameter will be defined in the IADS Client display using
the default naming convention of _IadsDecomStatus(n)_. Where (n) is the stream number for
multiple PCM stream setups. These parameters are automatically created in the IADS
Configuration file upon startup and can be used by the IADS Client along with pre-defined
derived functions for display purposes. These parameters are also used for informational
purposes by the IADS Operator Console in a real time environment. Even though these
parameters are not required in the stream, definition in the parameter definition file (see “IADS
Data Source Project” section below) is recommended. The currently supported decom status
format is shown in Appendix E.

The following is a parameter definition file excerpt showing both the Time and Decom
Status system parameter definitions.

1 DecomStatus 50.0 2 SystemParamType = DecomStatus
2 Param1 50.0 2
3 Param2 50.0 2

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 111

4 Param3 50.0 2
5 Param4 50.0 2
6 TimeUpperWord 1000.0 1 SystemParamType = MajorTime
7 TimeLowerWord 1000.0 1 SystemParamType = MinorTime

Example Data Source Program
The purpose of the example IADS Data Source program is to provide a better

understanding and guidance on the specifics of developing an interface to communicate with the
IADS Server. The program initially waits for an IADS Server to connect and then sends data
packets containing simulated data. The program also allows for reconnections to the IADS
Server without re-launching the application which is a useful feature of the data source.

The IADS Data Source program is available either by requesting the IADS Data Source
Developers Kit from Curtiss Wright IADS or downloading from the Programming Examples
page on the Curtiss Wright IADS web site (https://iads.symvionics.com/support/programming-
examples/) by selecting the IADS Data Source option under the section named “Data Processing
Examples”.

IADS Data Source Project
The IADS Data Source program is a Microsoft Visual Studio 2005 project written in C++

that contains three example programs demonstrating how to output the different packet formats
available along with various methods of inserting data inside the packets. The project also
contains three parameter definition files that describe the parameter specifications for each
example. For more background information on packet setup and communication protocol along
with details on parameter definition files see Section 7.1.1 of this document.

In order to specify which example program to apply, open up the project in Visual Studio
and go to the Solution Explorer then Right-click on one of the source files named
IadsDS_SimStyle.cpp, IadsDS_DecomStyle.cpp or IadsDS_BlobStyle.cpp and select Properties.
Then in the Property Pages dialog go to the Excluded From Build entry located under
Configuration Properties > General and specify No to include the file or Yes to exclude the file.
Make sure only one of the cpp files is set to No before building the project.

https://iads.symvionics.com/support/programming-examples/
https://iads.symvionics.com/support/programming-examples/

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 112

The different example programs are described as follows:
1) Simulator Style (IadsDS_SimStyle.cpp) - This program sends four data parameters along

with time words to the IADS Server. The data parameters are all at the same sample rate
which is typical of simulator output. Since this is the simplest case, we recommend that you
start with this example. To setup a project build, the IadsDS_SimStyle.cpp should be the only
cpp file where the Excluded From Build property is set to No. The parameter definition file
associated with this program is named IadsDS.prn.SimStyle and located in the main project
directory. Note that this program applies packet format 100 (tag/tag/value/value).

2) Decom Style (IadsDS_DecomStyle.cpp) - This program sends five data parameters along
with time words to the IADS Server. The data parameters are at different sample rates which

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 113

is typical of decom-based systems. This provides a more complex example showing how to
populate packets using differing sample rates. To setup a project for build, the
IadsDS_DecomStyle.cpp should be the only cpp file where the Excluded From Build
property is set to No. The parameter definition file associated with this program is named
IadsDS.prn.DecomStyle and located in the main project directory. Note that this program
applies packet format 100 (tag/tag/value/value).

3) Blob Style (IadsDS_BlobStyle.cpp) - This program sends one Blob parameter along with
time words to the IADS Server. The Blob parameter contains four floating point parameters.
To setup a project for build, the IadsDS_BlobStyle.cpp should be the only cpp file where the
Excluded From Build property is set to No. The parameter definition file associated with this
program is named IadsDS.prn.BlobStyle and located in the main project directory. Note that
this program applies packet format 101 (tag/size/value).

Running the IADS Data Source Program
The IADS Data Source program can be run either within the Visual Studio environment

or by creating a shortcut on the Windows desktop that points to the program’s executable file
(IadsDS.exe). Each version of the example program launches a command window and then goes
into a state that waits for the IADS Server to connect. The next section provides instructions on
how to use IADS to test the data source interface.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 114

7.1.3 Testing the data source using IADS Real Time Station
To test the data source interface, we recommend using the IADS Real Time Station (RT

Station) product in order to perform communication protocol and data flow verification
activities. RT Station is an installable application that includes both the IADS Server and IADS
Client display subsystems so that data from the data source program can be delivered and viewed
in IADS.

The RT Station installation package is available either by purchasing the product from
Curtiss Wright (Part numbers are IADS-TELEM-RTSTATION-1 or IADS-TELEM-BASE-TPP)
or by requesting the IADS Data Source Developers Kit (IADS-TELEM-DEV)
Running RT Station

Running RT Station brings up a start wizard that will guide you through the process of
selecting setup information that describes how to connect to the data source program and specify
the parameter definition file. The startup steps are as follows:
1) Make sure the data source program is running and waiting to connect to IADS.
2) Double click the IADS Real Time Station icon on the Windows desktop.
3) On the Choose Data Source page select the IADS Custom option from the dropdown menu

in the Data Source field. Click Next to continue.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 115

4) On the Choose Data Host page enter the name or IP address of the computer running the data
source program in the Host Name entry. This can be entered manually or selected via the
browse button on the right of the entry. The PortId entry defaults to 49000 which is the initial
setup in the example data source program. This field can be edited to specify the port id that
is available on the data source for connection. Click Next to continue.

5) On the Choose PRN File page select the parameter definition file that contains the parameter
specifications of the data source output. There is a browse button available on the right of the
entry to assist in locating the file. If you are running one of the sample programs the
matching parameter definition files are in the IADS Data Source project location. Click Next
to continue.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 116

6) On the Choose Data Directory page select the destination folder for your IADS data storage
files. A browse button is available on the right of the entry to assist in locating the directory.
Click Next to continue.

7) On the Choose IADS Config File page select the Create new Config file option. This will
automatically create a new IADS Configuration File from scratch that contains the
parameters specified in the parameter definition file you selected earlier in the wizard. Click
Next to continue.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 117

8) On the Start Data Acquisition page review the settings and click Finish to start IADS.

At this point RT Station will connect to the data source and start ingesting and processing
data packets. The IADS Client application will then be launched and you will be prompted to
startup the client via the IADS Log On dialog. Select the predefined user name User1 and
desktop name Desktop1 then click the Log On button (This step is automatic if User1 and
Desktop1 are the only options.) This user and desktop setup contains a blank Analysis
Window (Window1) which acts as a palette for data displays to be added.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 118

Creating Displays in IADS
In order to view the data being delivered from the data source you need to create displays

within the IADS Client application. IADS displays are created using icons in the Display Builder
shown below. The Display Builder button is located in the far-right portion of the IADS
Dashboard. Use the Window1 analysis window to house the displays. The steps to build up
displays are as follows:
1) On the Dashboard click the Display Builder button.

2) On the Display Builder dialog click the Data Displays tab. A selection of display types is

presented.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 119

3) On the Data Displays tab click on the Vertical Stripchart icon then hold down the left
mouse button and drag onto Window1. This will create a new instance of a Stripchart display
inside the window.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 120

Adding Parameters to an IADS Display
1) On the Dashboard, click the Parameter Tool button.

2) On the Parameter Tool select a parameter then hold down the left mouse button and drag

onto the Stripchart display. Select Value in the popup options after dropping the parameter
onto the display (i.e. releasing the left mouse button).

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 121

The following are example windows showing data from the three sample programs contained
in the IADS Data Source project:

Simulator Style

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 122

Decom Style

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 123

Blob Style

More detail on display types and general client functionality can be found in the IADS
Client Help system which can be accessed via the lower right-most button on the Dashboard.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 124

7.1.4 Troubleshooting

Validating Time
When the IADS Server connects to the data source and starts receiving packets it goes

through a brief period of verifying that time parameter values are increasing at the expected
increment. A common problem with a new data source interface is that the IADS Server may not
successfully validate time during startup because the time values are not increasing at an
increment based on the time word sample rate. For example, if the rate of the time parameter is
1000 samples per second the IADS Server will expect time value increments of 1 millisecond per
sample. Any time decrements or increments over 2x the expected rate will cause a validation
failure. If time does not successfully validate a dialog containing possible reasons for failure will
pop up as follows:

Typical reasons for time validation failures are as follows:
1) One or both time parameter tag ids are not found in the data. In this case verify that the

parameter definition file that was entered during wizard startup contains the correct tag ids
for the upper and lower time parameters. Verify that the data source is actually placing time
parameter samples within the data packets. Check that the data source is truly sending data
packets to the IADS Server.

2) Invalid time sequence errors. In this case verify the sample rate of the time parameters in the
parameter definition file are correct. Verify there are no upstream errors occurring from the
time source...e.g. Time Code Generator. Time values that seem corrupted (e.g. IRIG day
values outside the range of 1-366) could mean that there is a packet misalignment...verify
that the packet size specified in the 1st word of the packet header corresponds to the actual
size of the remaining portion of the header along with the packet payload size.

A source of information that assists in determining reasons for validation errors is a file
named “timeOut0.txt” located in the Logs folder under the IADS data directory that was
specified during wizard startup. This file contains time values of each time word received by the
IADS Server during the time validation period. An empty file means that one or both time
parameter tag ids were not sensed during the validation period (see reason 1 above). The file is

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 125

also valuable for obtaining more detail on invalid time sequence errors (see reason 2 above). An
example format of the “timeOut0.txt” file is as follows:

001:00:00:00.020 (86400020000000)
001:00:00:00.040 (86400040000000)
001:00:00:00.060 (86400060000000)
001:00:00:00.080 (86400080000000)
001:00:00:00.100 (86400100000000)

The 1st column is the IRIG representation of the time values and the 2nd column is the
64-bit integer representation of the values (in nanoseconds). In this example the time is
incrementing by 20 milliseconds per sample which should correspond to a 50 sample per second
rate for the time parameters specified in the parameter definitions file

For further troubleshooting assistance please zip up the entire Logs folder located in the
IADS data directory and send to iads-support@curtisswright.com to help in analyzing the issue.

7.2 IADS Command Interface
The IADS Command interface assists users with programming their own command and control
application for the IADS real-time system.
In order to command and control the IADS Real-time system the EUCCA must interface to the
CDS Command server that is part of the CDS running application. Interfacing to the IADS
Commander is optional, but is recommended because the function of this application may
increase in future releases. The CDS Command server interface is used to command the CDS
application with functions such as validation, startup, resets, and shutdown and to retrieve status.
The IADS Commander is typically installed on the target computer to run upon login. Its
purpose is to allow remote startup of an IADS application such as the CDS and the IADS display
client and to retrieve status on the computer and file transfers. The EUCCA will typically use the
IADS Commander to transfer needed startup files for the CDS and the IADS display clients.
The IADS commander can also be used to launch the CDS, then, upon successful start of the
CDS, start the IADS display clients. During real-time the EUCCA will use the CDS command
server to get status and perform a shutdown. Both the CDS and the IADS Commander interfaces
are client/server socket-based network applications that utilize TCP/IP on well know Port Ids.
Following is a notional diagram of EUCCA and the component server interfaces.

mailto:iads-support@curtisswright.com

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 126

7.2.1 IADS Commander
The IADS Commander is part of the IADS Real Time system installation package and

after install will run upon login of the computer. The IADS Commander is installed on the IADS
display client workstations and the IADS Server (The CDS). The primary purpose of the IADS
Commander is to provide a socket-based interface to start and terminate IADS application
components, get status on the machine that it installed on, and performing critical functions such
as transferring application startup files. The IADS Commander utilizes the TCP/IP protocol
therefore the EUCCA will make an active connection and behave as a client making requests and
receiving message replies from the IADS Commander server. Once complete the EUCCA needs
to disconnect after which the IADS Commander will be ready for further connections.

Connection Information
Field Entry/Selection

Connection Port 58003
Connection Type TCP/IP

Protocol Overview
• Fixed length message packet of 2000 ASCII characters
• Client performs a send on the socket of the full 2000 characters regardless of the message

type
• The IADS Commander server performs the function and sends back a status string
• Client performs a receive on the socket to retrieve the response message
• Argument strings cannot contain spaces

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 127

IADS Commander Message Syntax
Message:<sp>Message:<sp>[Arguments]\n[Message...\n]

IADS Commander Messages Overview
Message Description

CreateProcess Create a process on a local or remote computer
TerminateProcess Terminate a process on a local or remote computer
ForwardMessage Send a message to another Commander
ProcessStatus Determine if a process is running on a remote machine
ProcessSearch Find all processes given a process name
TransferFile Transfer a file from one computer to another
WritePermission Get the file permission for the given file
TempPath Get the Windows temporary path for a remote machine
SystemInfo Get certain Windows system information
ProcessInfo Get certain Windows process information
PathIsDirectory Check if the path sent from the Client is an actual path on the remote

machine
MakeDirectory Create the directory given the path sent from the Client
DirectoryHasData Check if the directory already contains IADS data
GetNextFreeDirectoryName The Commander returns a directory name
FileExists The Commander checks if the file already exists

CreateProcess
Description: Create a process on a local or remote computer.
Behavior: The IADS Commander will run the process given the process name (not
recommended) or the PID if the process name is empty.

Request Message

“Message: CreateProcess\nProcessName: \nArguments: \nWorkingDirectory: \n”
Request Message Arguments

Arg1 (ProcessName) – Full path and name of the process.
Arg2 (Arguments) – User specified arguments passed to the process.
Arg3 (WorkingDirectory) – Windows will start the process with this as its working directory.
Response Messages

1 "Message: Acknowledge\nProcessStatus: Stopped\n”
2 "Message: Acknowledge\nProcessStatus: Running\nPID: \n”

CreateProcess message process:
1) Client sends the CreateProcess message with the required arguments.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 128

2) Server receives the message and performs the function.
3) Server responds with a status message.
4) Client receives the status message.

TerminateProcess
Description: Terminate a process on a local or remote computer. Use of the PID argument is
recommended.
Behavior: The Commander will hard terminate the process specified by the process name (not
recommended) or the PID. Be careful with this call because it kills the process without notifying
it.

Request Message

“Message: TerminateProcess\nPID: \nProcessName: \nExitCode: \n”
Request Message Arguments

Arg1 (PID) – Kill process by the process ID.
Arg2 (ProcessName) – Kill Process by Process name (use caution with duplicate running

processes).
Arg3 (ExitCode) – User specified arguments passed to the process.
Response Messages

1 "Message: Acknowledge\nProcessStatus: Stopped\n
2 "Message: Acknowledge\nProcessStatus: Running\nPID: \n

Terminate message process:
1) Client sends the TerminateProcess message with the required arguments.
2) Server receives the message and performs the function.
3) Server responds with a status message.
4) Client receives the status message.

ForwardMessage
Description: Send a message from the currently connected Commander to another running on a
different computer.
Behavior: The Commander will forward the message onto the Commander running on the
remote computer specified by the Host argument.

Request Message

“Message: ForwardMessage\nHost: \nRemoteMessage: \n”
Request Message Arguments

Arg1 (Host) – Host with running commander to forward the message to.
Arg2 (RemoteMessage) – Message to forward.
Response Messages

1 "Message: Acknowledge\nForwardMessage: %s\n”
2 - Error "Message: Acknowledge\nForwardMessage: Unable to Parse Message\n”

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 129

3 - Error "Message: Acknowledge\nForwardMessage: Unable to Connect to
RemoteCommander\n”

4 - Error "Message: Acknowledge\nForwardMessage: Unable to Send Message to
RemoteCommander\n”

5 - Error "Message: Acknowledge\nForwardMessage: Unable to Receive Message from Remote
Commander\n”

ForwardMessage message process:
1) Client sends the ForwardMessage message with the required requirements.
2) Server receives the message and performs the function.
3) Server responds with a status message.
4) Client receives the status message.

ProcessStatus
Description: Determine if a process is running on a remote machine. Use of the PID argument is
highly recommended.
Behavior: If the ProcessName argument is empty, the PID argument is used to identify the
process.

Request Message

“Message: ProcessStatus\nHost: \nRemoteMessage: \n”
Request Message Arguments

Arg1 (ProcessName) – Name of the process to get status on. Use Caution with this argument
because multiple versions of the same application may be running.

Arg2 (PID) – Process ID of the process to get status on.
Response Messages

1 "Message: Acknowledge\nProcessStatus: Running\nVER: 1\n”
2 "Message: Acknowledge\nProcessStatus: Stopped\nVER: 1\n”
3 "Message: Acknowledge\nNumRet: \n”
4 - Error “Message: Acknowledge\nProcessStatus: Unknown Process”
5 -Error "Message: Acknowledge\nProcessInfo: PID is invalid\n”
6 - Error "Message: Acknowledge\nProcessSearch: Unknown ProcessName\n”

ProcessStatus message process:
1) Client sends the ProcessStatus message with the required arguments.
2) Server receives the message and performs the function.
3) Server responds with a status message.
4) Client receives the status message.

ProcessSearch
Description: Find all processes given a process name and return the PID and Command line
arguments for each.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 130

Behavior: The Commander will search the process table for all occurrences of the process name.
Request Message

“Message: ProcessSearch\nProcessName: \n”
Request Message Arguments

Arg1 (ProcessName) – Name of the process to get status for. Use Caution with this argument
because multiple versions of the same application may be running.

Arg2 (PID) – Process ID of the process to get status on.
Response Messages

1 "Message: Acknowledge\nNumRet: 0\n”
2 "Message: Acknowledge\nNumRet: \nCmdArgs%d: \n\nPID%d: \n”
3 - Error “Message: Acknowledge\nProcessSearch: Unknown ProcessName\n”

Process Search message process:
1) Client sends the ProcessSearch message with the required Arguments.
2) Server receives the message and performs the function.
3) Server responds with a response message.
4) Client receives the response message.

TransferFile
Description: Transfer a file from one computer to another.
Behavior: Transfers configuration and various startup files.

Request Message

“Message: TransferFile\nNameAndPath: \nFileSize: \n”
Request Message Arguments

Arg1 (NameAndPath) - The location to write the file on the destination machine.
Arg2 (FileSize) - The total file size that will be transferred.
Response Messages

1 "Message: Acknowledge\nTransferStatus: Success creating file\n"
2 "Message: Acknowledge\nTransferStatus: Success transferring file\n"
3 - Error "Message: Acknowledge\nTransferFile: FileName is empty\n"
4 - Error "Message: Acknowledge\nTransferFile: FileSize is Empty\n"
5 - Error "Message: Acknowledge\nTransferStatus: File Size is less than or equal to zero\n"
6 - Error "Message: Acknowledge\nTransferStatus: Error creating file\n"
7 - Error "Message: Acknowledge\nTransferStatus: Unable to allocate file transfer buffer\n"
8 - Error "Message: Acknowledge\nTransferStatus: Unable to Recv file transfer buffer\n”
9 - Error "Message: Acknowledge\nTransferStatus: Error transferring file\n"

TransferFile message process:
1) The Client sends the TransferFile message with the required arguments.
2) The Server receives the message and waits in a socket receive for the file data.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 131

3) The Client receives the file creation message.
4) The Client sends the file.
5) The Server sends the response message.
6) The Client receives the response message.
Warning: Files will fail to transfer if the file size is greater than available contiguous memory.
Also, transferring files greater than 1MB is not recommended.

WritePermission
Description: Get the file permission for the given file.
Behavior: The Commander will return the permission of the given file.

Request Message

“Message: WritePermission\nNameAndPath: \n"
Request Message Arguments

Arg1 (NameAndPath) – Absolute file name and path. Please note that the entire message is
limited to 2000 characters.

Response Messages

1 "Message: Acknowledge\nWritePermission: ReadOnly\n"
2 "Message: Acknowledge\nWritePermission: Writeable\n”
3 - Error "Message: Acknowledge\nWritePermission: Filename is empty\n"

WritePermission message process:
1) The Client sends the WritePermission message with the required arguments.
2) The Commander receives the message and performs the function.
3) The Commander sends the response message.
4) The Client receives the response message.

TempPath
Description: Get the Windows temporary path for a remote machine.
Behavior: The Commander will return the Windows temporary path for the remote computer.

Request Message

“Message: TempPath\n”
Request Message Arguments

None
Response Messages

1 "Message: Acknowledge\nTempPath: <temporary path>\n"

TempPath message process:
1) The Client sends the TempPath message.
2) The Commander receives the message and performs the function.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 132

3) The Commander sends the response message.
4) The Client receives the response message.

SystemInfo
Description: Get certain Windows system information.
Behavior: The Commander will return certain system information for the remote computer.

Request Message

“Message: SystemInfo\n”
Request Message Arguments

None
Response Messages

1 " Message: Acknowledge\nSystemInfo: <disk size> <disk free> <total memory> <total
memory used> <total physical memory> <physical memory used> <number of CPUs>
<space separated list of CPU percentages>n"

SystemInfo message process:
1) The Client sends the SystemInfo message.
2) The Commander receives the message and performs the function on the remote machine.
3) The Commander sends the response message.
4) The Client receives the response message.

ProcessInfo
Description: Get certain Windows process information.
Behavior: The Commander will return the percentage CPU used for the process given the
process name (not recommended) or the PID if the process name is empty.

Request Message

“Message: ProcessInfo\n"
Request Message Arguments

None
Response Messages

1 "Message: Acknowledge\nProcessStatus: Stopped\n”
2 "Message: Acknowledge\nProcessInfo: <percentage cpu used>\n”
3 - Error "Message: Acknowledge\nProcessInfo: Error with allocation\n”
4 - Error "Message: Acknowledge\nProcessInfo: Process name is empty\n”
5 - Error "Message: Acknowledge\nProcessInfo: PID is invalid\n”

ProcessInfo message process:
1) The Client sends the ProcessInfo message.
2) The Commander receives the message and performs the function on the remote machine.
3) The Commander sends the response message.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 133

4) The Client receives the response message.

PathIsDirectory
Description: Check if the path sent from the Client is an actual path on the remote machine.
Behavior: The Commander will return True if the path string sent by the Client is an actual path
on the remote machine, otherwise False.

Request Message

“Message: "Message: PathIsDirectory\nPath: \n”
Request Message Arguments

Arg1 (Path) – The path string to verify on the remote machine.
Response Messages

1 "Message: Acknowledge\nPathIsDirectory: True\n”
2 "Message: Acknowledge\nPathIsDirectory: False\n”
3 - Error "Message: Acknowledge\nPathIsDirectory: Invalid Path\n”

PathIsDirectory Message Process:
1) The Client sends the PathIsDirectory message.
2) The Commander receives the message and performs the function on the remote machine.
3) The Commander sends the response message.
4) The Client receives the response message.

MakeDirectory
Description: Create the directory given the path sent from the Client.
Behavior: The Commander will return Success if the path was created on the remote machine,
otherwise Failure.

Request Message

"Message: MakeDirectory\nPath: \n”
Request Message Arguments

Arg1 (Path) – Path string to of directory to create on the remote machine.
Response Messages

1 "Message: Acknowledge\nMakeDirectory: SUCCESS\n”
2 "Message: Acknowledge\nMakeDirectory: FAILURE\n”
3 - Error "Message: Acknowledge\nMakeDirectory: Invalid Path\n”

MakeDirectory message process:
1) The Client sends the MakeDirectory message.
2) The Commander receives the message and performs the function on the remote machine.
3) The Commander sends the response message.
4) The Client receives the response message.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 134

DirectoryHasData
Description: Check if the path sent from the Client already contains IADS data.
Behavior: The Commander will return True if the Path has data contained within in it, otherwise
False.

Request Message

“Message: DirectoryHasData\nPath: \n”
Request Message Arguments

Arg1 (Path) – Path string of directory to create on the remote machine.
Response Messages

1 "Message: Acknowledge\nDirectoryHasData: True\n”
2 "Message: Acknowledge\nDirectoryHasData: False\n”
3 - Error "Message: Acknowledge\nDirectoryHasData: Invalid Path\n”

DirectoryHasData message process:
1) The Client sends the DirectoryHasData message.
2) The Commander receives the message and performs the function on the remote machine.
3) The Commander sends the response message.
4) The Client receives the response message.

GetNextFreeDirectoryName
Description: The Commander will return a sequential backup directory name.
Behavior: The Commander will check the file system for the next available directory with a
number appended to the name.

Request Message

“Message: GetNextFreeDirectoryName\nPath: \n”
Request Message Arguments

Arg1 (Path) – Path string of directory to create on the remote machine.
Response Messages

1 "Message: Acknowledge\nGetNextFreeDirectoryName: <next free directory name>\n”
2 "Message: Acknowledge\nGetNextFreeDirectoryName: FAILURE\n”
3 - Error "Message: Acknowledge\nGetNextFreeDirectoryName: Invalid Path\n”

GetNextFreeDirectoryName message process:
1) The Client sends the GetNextFreeDirectoryName message.
2) The Commander receives the message and performs the function on the remote machine.
3) The Commander sends the response message.
4) The Client receives the response message.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 135

FileExists
Description: The Commander will check if the file already exists on the remote machine.
Behavior: The Commander will check the existence of the file sent from the Client on the remote
computer.

Request Message

“Message: FileExists\nPath: \n"
Request Message Arguments

Arg1 (File) – File name and path to check for existence on the remote machine.
Response Messages

1 "Message: Acknowledge\nFileExists: TRUE\n”
2 "Message: Acknowledge\nFileExists: FALSE\n”
3 - Error "Message: Acknowledge\nFileExists: Unable to determine if file specified\n”

FileExists message process:
1) The Client sends the FileExists message.
2) The Commander receives the message and performs the function on the remote machine.
3) The Commander sends the response message.
4) The Client receives the response message.

C++ Source Code Example
Note: This example is for demonstration purposes only and may not compile as written here.
Many languages, such as V, C#, C and C++ provide their own socket routines that will work
with the IADS Commander.

char inMsg[2000] = {'\0'} ;

char outMsg[2000] = {'\0'} ;

// Creates a socket connection to the IADS Commander

ClientSocket* clientSocket = new ClientSocket(port, host) ;

if(clientSocket == NULL)

{

 printf("Error: Socket Interface Creation Error...\n") ;

 exit(1) ;

}

// Clients make an active connect

printf("- Waiting to Connect to Service\n") ;

if(clientSocket->Connect(-1) == 0)

{

 printf("Error Client Unable to make Active Connect...\n") ;

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 136

 exit(1) ;

}

printf("- Client Connected...\n\n") ;

char file[MAX_PATH] = {"c:\\SomePath\\SomeFile.txt"} ;

sprintf(outMsg, "Message: WritePermission\nNameAndPath: %s\n", file) ;

// Let commander know what's coming...

printf(" Send Message:\n%s", outMsg) ;

if(clientSocket->Send(outMsg, 2000) == 0)

{

 printf("ClientWorkstation - Connection Terminted...\n") ;

 break ;

}

// Receive Response from the IADS Commander

printf("- Wait to Receive Acknowledge from Server...\n") ;

if(clientSocket->Recv(inMsg, 2000) == utFailure)

{

 printf("- Client Connection Terminted...\n") ;

 break ;

}

// Disconnect from the IADS Commander

delete clientSocket ;

7.2.2 The CDS Command Server
The CDS Command server is included as a capability within the CDS process. The CDS is part
of the IADS Real-time system to be installed on the computer designated as the IADS Server.
The purpose of the CDS Command server is to provide a socket-based interface to control the
running operation of the CDS and provide various status information. There is a full set of
commands to control the CDS application to perform functions such as; IADS configuration file
validation, start data acquisition and stop data acquisition. In addition there is a full set of status
commands such as; time validation state, processing status, and information about the upstream
data source. The CDS Command server utilizes the TCP/IP protocol therefore the EUCCA will
make an active connection and behave as a client making requests and receiving message replies
from the Command server.

Setup Information
Field Entry/Selection

Connection Port 58001
Connection Type TCP/IP

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 137

Protocol
• Client performs a send on the socket
• The CDS Command Server performs the function and sends back a response message
• Client performs a receive on the socket to retrieve the response message
• The CDS does not guarantee a response message to be null terminated.

CDS Messages Overview
Message Description

Initialization Commands and Information
StartConnectTest Command the CDS to begin the test
IsCdsDataSourceConnectTestCompleted Check if the test is still running
GetCdsDataSourceConnectTestInfoString Return information from the test
GetCdsDataSourceConnectTestResult Return test results
GetCdsInitInfo State of CDS initialization
GetCdsInitInfoString Return information from the process
StartConfigValidationFromFile Start config validation from start file
IsValidationComplete State of validation processing
GetConfigValidateInfo State of validation success
GetValidationStatusString Return information from the process
Data Acquisition Commands and Information
StartData Start CDS data acquisition
RestartCds Perform a CDS recovery
ResetCdsWithAppend Reset the CDS and append data
ResetCdsWithSave Reset the CDS and save
ResetCdsWithoutSave Reset the CDS without saving
ResetCdsWithAppendBlocked Reset the CDS with append blocked
ResetCdsWithSaveBlocked Reset the CDS with save blocked
ResetCdsWithoutSaveBlocked Reset the CDS without save blocked
IsDataStarted Return data acquisition status
GetCdsDataGatherInfoString Return information from the process
Stopping Data
StopData Stop CDS data acquisition
IsStopDataComplete Return stop data acquisition status
GetCdsStopInfoString Return information from the process
Time Information
IsTimeValidated Return time validation status
GetCdsTimeValidationInfoString Return information from the process
GetIrigTime Return current IRIG time from CDS

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 138

Archiving
StartDataArchiving Start data archiving
StartDataArchivingWithAppend Start data archiving with append
StopDataArchiving Stop data archiving
ResetDataArchiving Reset data archiving
ResetDataArchivingWithAppend Reset data archiving with append
IsDataArchiving Return data archiving status
Nulling
StartAircraftNulling Start aircraft nulling
IsAircraftNulling Return aircraft nulling status
StartWeaponsBayNulling Start weapons bay nulling
IsWeaponsBayNulling Return weapons bay nulling status
Data Compression
StartDataCompression Start data compression
IsDataCompressionRunning Return state of process
GetDataCompressionStatus Return data compression status
GetDataCompressionError Return information from the process
StopDataCompression Stop data compression
Shutdown
Shutdown Shutdown CDS
Run State
GetCdsStartInfo Return status of CDS start command
GetCdsStopInfo Return status of CDS stop command
GetPredictedAggRate Return predicted aggregate rate
Data Source Information
GetSys500Info Not yet documented
GetSys500DecomStatus Not yet documented
GetOmegaInfo Return Omega information
GetOmegaDecomStatus Return Omega decom status
GetVistaInfo Not yet documented
GetVistaDecomStatus Not yet documented
GetS6200 Not yet documented
GetS6200DecomStatus Not yet documented
GetMCSInfo Not yet documented
GetMCSDecomStatus Not yet documented
GetCustomDSInfo Not yet documented
GetCustomDSDecomStatus Not yet documented
GetDataInterfaceInfo Not yet documented
GetDecomStatus Not yet documented

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 139

System Wide Information
GetCdsSystemInfo Return certain system information
GetFrontEndType Return primary front end type
GetNumberDecomStreams Return the number of decom streams for the

primary front end
GetBaseDataSourceInfo Return active data source information

7.2.3 Initialization Commands and Information

StartConnectTest
Description: Command the CDS to begin a connect test to the upstream data source computer.
Behavior: The CDS will send a response message before the connect test is initiated. A failure
condition is triggered if the CDS had already initiated a connect test in the past when the
command is received. This message is not necessary for the CDS to successfully run.
Subsequently use the “IsCdsDataSourceConnectTestComplete” to determine the state of the
connect test.

Request Message

“StartConnectTest”
Response Messages

1 "StartConnectTest ok”
2 - Error "StartConnectTest failure Connect Test is already running”

StartConnectTest message process:
1) The Client sends the StartConnectTest message.
2) The CDS receives the message and responds back to the Client.
3) The CDS performs the function.
4) The Client receives the response message.

IsCdsDataSourceConnectTestCompleted
Description: Check if a CDS connect test has been completed.
Behavior: The CDS will send a response message of true if the connect test has completed,
otherwise false.

Request Message

"IsCdsDataSourceConnectTestCompleted"
Response Messages

1 “IsCdsDataSourceConnectTestCompleted ok <true, false>”

IsCdsDataSourceConnectTestCompleted message process:
1) The Client sends the IsCDSDataSourceConnectTestCompleted message.
2) The CDS receives the message, checks the status of the connect test and responds to the

Client.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 140

3) The Client receives the response message.

GetCdsDataSourceConnectTestInfoString
Description: Get information on the results of the CDS connect test.
Behavior: The CDS will send a response message with information about the connect test that
was performed. Use this to obtain more detail on the connect test results.

Request Message

"GetCdsDataSourceConnectTestInfoString"
Response Messages

1 “GetCdsDataSourceConnectTestInfoString ok <information string>”
2 “GetCdsDataSourceConnectTestInfoString ok NULL”

GetCdsDataSourceConnectTestInfoString message process:
1) The Client sends the GetCdsDataSourceConnectTestInfoString message.
2) The CDS receives the message and returns the connect test information string.
3) The Client receives the message.

GetCdsDataSourceConnectTestResult
Description: Get information on the results of the CDS connect test.
Behavior: The CDS will send a response message with results on the connect test that was
performed. Use this after sensing the connect test has completed to determine whether the
connect test succeeded (true) or failed (false) along with additional information upon failure.

Request Message

"GetCdsDataSourceConnectTestResult"
Response Messages

1 “GetCdsDataSourceConnectTestResult ok false <code> <failure result string>”
2 “GetCdsDataSourceConnectTestResult ok <true, false>”

Note: Response message 2 can be false only if command is sent prior to completion of connect
test.

GetCdsDataSourceConnectTestResult message process:
1) The Client sends the GetCdsDataSourceConnectTestResult message.
2) The CDS receives the message and returns the connect test result string.
3) The Client receives the message.

GetCdsInitInfo
Description: The Client sends this command to retrieve CDS initialization state information,
specifically status on initialization completion and success.
Behavior: The CDS will send an ok token followed by two value strings of either “true” or
“false”. The first specifies status on initialization completion and the second states the
initialization success result.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 141

Request Message

"GetCdsInitInfo"
Response Messages

1 “GetCdsInitInfo ok <true, false> <true, false>” Example: “GetCdsInitInfo ok true true”

GetCdsInitInfo message process:
1) The Client sends the GetCdsInitInfo message.
2) The CDS receives the message and returns the initialization string.
3) The Client receives the message.

GetCdsInitInfoString
Description: The Client sends this command to retrieve the CDS initialization information string.
This may provide more detail on the results of the initialization performed.
Behavior: The CDS will send an ok token followed by either a NULL string if nothing is
available or the information string.

Request Message

"GetCdsInitInfoString"
Response Messages

1 “GetCdsInitInfoString ok <Information string>”
2 “GetCdsInitInfoString ok NULL”

GetCdsInitInfoString message process:
1) The Client sends the GetCdsInitInfoString message.
2) The CDS receives the message and returns the initialization information string.
3) The Client receives the message.

StartConfigValidationFromFile
Description: Start the configuration validation process.
Behavior: The CDS will send an Ok or Failure Response message immediately upon receipt of
this command. A failure condition is triggered when the CDS is already in an active data
acquisition state when the command is received. Additional messages will need to be sent to
query validation state and results. This step is mandatory in order for the CDS to operate
properly.

Request Message

“StartConfigValidationFromFile”
Response Messages

1 “StartConfigValidationFromFile ok”
2 - Error “StartConfigValidationFromFile failure CDS currently running”

StartConfigValidationFromFile Message Process:

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 142

1) The Client sends the StartConfigValidationFromFile message.
2) The CDS receives the message and returns a status before performing the validation.
3) The Client receives the message.

IsValidationComplete
Description: The Client sends this command to check the completion state of the config
validation process.
Behavior: The CDS will send an Ok string followed by a true or false string depending if the
validation is complete or not.

Request Message

“IsValidationComplete”
Response Messages

1 “IsValidationComplete ok <true, false>”

IsValidationComplete message process:
1) The Client sends the IsValidationComplete message.
2) The CDS receives the message and returns a status of the validation process.
3) The Client receives the message.

GetConfigValidateInfo
Description: The Client sends this command to retrieve status whether the CDS has successfully
performed validation.
Behavior: The CDS will send an Ok string followed by a true or false string depending if the
config successfully validated or not.

Request Message

“GetConfigValidateInfo”
Response Messages

1 “GetConfigValidateInfo ok <true, false>”

GetConfigValidateInfo message process:
1) The Client sends the GetConfigValidateInfo message.
2) The CDS receives the message and returns a status of the validation success.
3) The Client receives the message.

GetValidationStatusString
Description: The Client sends this command to retrieve the result string from the validation
process. Typically, this is used to obtain additional information when validation failures occur.
Behavior: The CDS will send an Ok string followed by either NULL if no status string is
available or the validation string.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 143

Request Message

“GetValidationStatusString”
Response Messages

1 “GetValidationStatusString ok <status string>”
2 - Error “GetValidationStatusString ok NULL”

GetValidationStatusString message process:
1) The Client sends the GetValidationStatusString message.
2) The CDS receives the message and returns the validation string.
3) The Client receives the message.

7.2.4 Data Acquisition Commands and Information
StartData
Description: The client sends this command to start the CDS data acquisition.
Behavior: The CDS will send an “ok” token with nothing following when the CDS is in a state
ready to start data acquisition otherwise a failure token is sent if the CDS is already in a data
acquisition state. The CDS will send the response before the start is initiated in order not to block
the requestor. A failure condition is triggered if the CDS is already in an active data acquisition
state when the command is received. This command is required in order to run the CDS and
gather data for real time operations.

Request Message

“StartData”
Response Messages

1 “StartData ok”
2 - Error “StartData failure Data is already running”

StartData message process:
1) The Client sends the “StartData” message.
2) The CDS receives the message and returns a response before initiating the start.
3) The Client receives the message.
RestartCDS
Description: The requestor sends this command to perform a CDS recovery. A recovery is
defined as restarting the CDS from scratch but maintaining some states from the previous run
such as null bias values along with bypassing certain initialization operations including IADS
configuration file validation. All subsequent data archiving is appended to the same archive files
created prior to the recovery action. Time validation is performed.
Behavior: The CDS will send an “ok” token upon success otherwise a “failure” token is sent.
The CDS will send the response message before the restart is initiated in order not to block the
requestor. A failure condition is triggered if the CDS is already in an active data acquisition state
when the command is received.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 144

Request Message

“RestartCds”
Response Messages

1 “RestartCds ok”
2 - Error “RestartCds failure Data is already running”

RestartCDS message process:
1) The Client sends the “RestartCds” message.
2) The CDS receives the message and returns a response before initiating the recovery action.
3) The Client receives the message.
Warning: This command may only be used immediately after execution – NO COMMAND
MAY PROCEED THIS COMMAND EXCEPT GetCdsInitInfo. If any other command is used
out of order prior to this, the CDS will not be in “recovery” mode.
ResetCdsWithAppend
Description: The Client sends this command to perform a CDS reset. On a reset the CDS stays in
a running state but suspends the data acquisition connection while flushing all data to disk
following by resuming the data acquisition process and reapplying time validation. Config file
validation is not performed. All subsequent data archiving will be appended to the existing
archive files.
Behavior: The CDS will send an Ok token with nothing following on success otherwise a failure
token is sent. The CDS will send the response message before the start is initiated in order not to
block the requestor. A failure condition is triggered if the CDS is not in an active data acquisition
state when the command is received.

Request Message

“ResetCdsWithAppend”
Response Messages

1 “ResetCdsWithAppend ok”
2 - Error “ResetCdsWithAppend failure Data is already running”

ResetCdsWithAppend message process:
1) The Client sends the “ResetCdsWithAppend” message.
2) The CDS receives the message and returns a response before initiating the reset.
3) The Client receives the message.
ResetCdsWithSave
Description: The Client sends this command to perform a CDS reset. On a reset the CDS stays in
a running state but suspends the data acquisition connection while flushing all data to disk
following by resuming the data acquisition process and reapplying time validation. Config file
validation is not performed. The current archive folder is renamed by appending “RestoredN” to
the folder name where N is the next unused number starting at 1. A new archive folder will be

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 145

created using the original name populated with the archive support files from the original folder
and new archive data files will be created.
Behavior: The CDS will send an Ok token with nothing following on success otherwise a failure
token is sent. The CDS will send the response message before the reset is initiated in order not to
block the requestor. A failure condition is triggered if the CDS is not in an active data acquisition
state when the command is received.

Request Message

“ResetCdsWithSave”
Response Messages

1 “ResetCdsWithSave ok”
2 - Error “ResetCdsWithSave failure Data is already running”

Message Process:
1) The Client sends the “ResetCdsWithSave” message.
2) The CDS receives the message and returns a response before initiating the reset.
3) The Client receives the message.
ResetCdsWithoutSave
Description: The Client sends this command to perform a CDS reset. On a reset the CDS stays in
a running state but suspends the data acquisition connection while flushing all data to disk
following by resuming the data acquisition process and reapplying time validation. Config file
validation is not performed. The currently saved data will be discarded and the archive files will
be truncated.
Behavior: The CDS will send an Ok token with nothing following on success otherwise a failure
token is sent. The CDS will send the response message before the reset is performed in order to
not block the requestor. A failure condition is triggered if the CDS is not in an active data
acquisition state when the command is received.

Request Message

“ResetCdsWithoutSave”
Response Messages

1 “ResetCdsWithoutSave ok”
2 - Error “ResetCdsWithoutSave ok failure Data is already running”

ResetCdsWithoutSave message process:
1) The Client sends the “ResetCdsWithoutSave” message.
2) The CDS receives the message and returns a response before initiating the reset.
3) The Client receives the message.
ResetCdsWithAppendBlocked
Description: The Client sends this command to perform a CDS reset. On a reset the CDS stays in
a running state but suspends the data acquisition connection while flushing all data to disk
following by resuming the data acquisition process and reapplying time validation. Config file

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 146

validation is not performed. All subsequent data archiving will be appended to the existing
archive files.
Behavior: The CDS will send an Ok token with nothing following on success otherwise a failure
token is sent. The CDS will delay sending the response message until after the reset is completed
blocking the requester in the process. A failure condition is triggered if the CDS is not in an
active data acquisition state when the command is received.

Request Message

“ResetCdsWithAppendBlocked” (Reset performed before response)
Response Messages

1 “ResetCdsWithAppendBlocked ok”
2 - Error “ResetCdsWithAppendBlocked failure Data is already running”

ResetCdsWithAppendBlocked message process:
1) The Requestor sends the “ResetCdsWithAppendBlocked” message.
2) The CDS receives the message and returns a response after completing the reset.
3) The Requestor receives the message.
ResetCdsWithSaveBlocked
Description: The Client sends this command to perform a CDS reset. On a reset the CDS stays in
a running state but suspends the data acquisition connection while flushing all data to disk
following by resuming the data acquisition process and reapplying time validation. Config file
validation is not performed. The current archive folder is renamed by appending “RestoredN” to
the folder name where N is the next unused number starting at 1. A new archive folder will be
created using the original name populated with the archive support files from the original folder
and new archive data files will be created.
Behavior: The CDS will send an Ok token with no other tokens following on success otherwise a
failure token is sent. The CDS will delay sending the response message until after the reset is
completed blocking the requestor in the process. A failure condition is triggered if the CDS is not
in an active data acquisition state when the command is received.

Request Message

“ResetCdsWithSaveBlocked”
Response Messages

1 “ResetCdsWithSaveBlocked ok”
2 - Error “ResetCdsWithSaveBlocked failure Data is already running”

ResetCdsWithSaveBlocked message process:
1) The Client sends the “ResetCdsWithSaveBlocked” message.
2) The CDS receives the message and returns a response after completing the reset.
3) The Client receives the message.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 147

ResetCdsWithoutSaveBlocked
Description: The Client sends this command to perform a CDS reset. On a reset the CDS stays in
a running state but suspends the data acquisition connection while flushing all data to disk
following by resuming the data acquisition process and reapplying time validation. Config file
validation is not performed. The currently saved data will be discarded and the archive files will
be truncated.
Behavior: The CDS will send an Ok token with nothing following on success otherwise a failure
token is sent. The CDS will send the response message after the reset is performed blocking the
requestor in the process. A failure condition is triggered if the CDS is not in an active data
acquisition state when the command is received.

Request Message

“ResetCdsWithoutSaveBlocked”
Response Messages

1 “ResetCdsWithoutSaveBlocked ok”
2 - Error “ResetCdsWithoutSaveBlocked failure Data is already running”

ResetCdsWithoutSaveBlocked message process:
1) The Client sends the “ResetCdsWithoutSaveBlocked” message.
2) The CDS receives the message and returns a response after completing the reset.
3) The Client receives the message.
IsDataStarted
Description: The Client sends the command to determine whether CDS data acquisition has been
started.
Behavior: The CDS will send the “ok” token with either a “true” token if data is started or a
“false” token if data is not started.

Request Message

“IsDataStarted”
Response Messages

1 “IsDataStarted ok <true, false>”

IsDataStarted message process:
1) The Client sends the “IsDataStarted” message.
2) The CDS receives the message and returns a response.
3) The Client receives the message.
GetCdsDataGatherInfoString
Description: The Requestor sends this command to obtain data gather information from the CDS.
Behavior: The CDS will send the “ok” token followed by the information string or “NULL”
token if no information is available.

Request Message

“GetCdsDataGatherInfoString”

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 148

Response Messages

1 “GetCdsDataGatherInfoString ok <information string>”
2 “GetCdsDataGatherInfoString ok NULL”

GetCdsDataGatherInfoString message process:
1) The Client sends the “GetCdsDataGatherInfoString” message.
2) The CDS receives the message and returns a response.
3) The Client receives the message.

7.2.5 Stopping Data Command and Information
StopData
Description: The Client sends this command to stop the CDS data acquisition. All data
acquisition and processing activities will be discontinued. All data not currently archived will be
flushed to disk.
Behavior: The CDS will send an “ok” token on success otherwise a failure token is sent. The
CDS will send the response before the stop is initiated in order not to block the requestor. A
failure condition is triggered if the CDS is not in an active data acquisition state when the
command is received.

Request Message

“StopData”
Response Messages

1 “StopData ok”
2 - Error “StopData failure Data is not currently running”

StopData message process:
1) The Requestor sends the “StopData” message.
2) The CDS receives the message and returns a response before initiating the stop.
3) The Requestor receives the message.
IsStopDataComplete
Description: The Client sends this command to check if the CDS has stopped data acquisition.
Behavior: The CDS will send the “ok” token followed by either a “true” token if data is stopped
or a “false” token if data is not stopped.

Request Message

“IsStopDataComplete”
Response Messages

1 “IsStopDataComplete ok <true, false>”

IsStopDataComplete message process:
1) The Client sends the “IsStopDataComplete” message.
2) The CDS receives the message and returns a response.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 149

3) The Client receives the message.
GetCdsStopInfoString
Description: The Client sends this command to get the stop data status information string from
the CDS.
Behavior: The CDS will send the “ok” token followed by either the information string or
“NULL” token if no information is available.

Request Message

“GetCdsStopInfoString”
Response Messages

1 “GetCdsStopInfoString ok NULL”
2 “GetCdsStopInfoString ok <information string>”

GetCdsStopInfoString message process:
1) The Client sends the “GetCdsStopInfoString” message.
2) The CDS receives the message and returns a response.
3) The Client receives the message.

7.2.6 Time Information
IsTimeValidated
Description: The Requestor sends this command to check if the CDS has successfully validated
the upstream data source time flow.
Behavior: The CDS will send the “ok” token followed by either a “true” token if the data source
time validation succeeded or a “false” token if not.

Request Message

“IsTimeValidated”
Response Messages

1 “IsTimeValidated ok <true, false>”

IsTimeValidated message process:
1) The Client sends the “IsTimeValidated” message.
2) The CDS receives the message and returns a response.
3) The Client receives the message.
GetCdsTimeValidationInfoString
Description: The Client sends this command to time validation information string from the CDS.
Behavior: The CDS will send the “ok” token followed by the information string or “NULL”
token if no information is available.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 150

Request Message

“GetCdsTimeValidationInfoString”
Response Messages

1 “GetCdsTimeValidationInfoString ok NULL”
2 “GetCdsTimeValidationInfoString ok <information string>”

GetCdsTimeValidationInfoString message process:
1) The Client sends the “GetCdsTimeValidationInfoString” message.
2) The CDS receives the message and returns a response.
3) The Client receives the message.
GetIRIGTime
Description: The Requestor sends this command to retrieve the current IRIG time from the CDS.
Behavior: The CDS will send the “ok” token followed by the IADS IRIG time string. The
returned IRIG string format is DDD:HH:MM:SS.sss.

Request Message

“GetIRIGTime”
Response Messages

1 “GetIRIGTime ok <IRIG time string>”

GetIRIGTime message process:
1) The Client sends the “GetIRIGTime” message.
2) The CDS receives the message and returns a response.
3) The Client receives the message.

7.2.7 Archiving Commands and Information
StartDataArchiving
Description: The Client sends this command to start data archiving. Any previously saved data
will be discarded and the archive data files will be truncated.
Behavior: The CDS will send an “ok” token on success otherwise a failure token is sent. The
CDS will send the response after the data archiving is initiated. A failure condition is triggered if
the CDS is already in an active data archiving state when the command is received.

Request Message

“StartDataArchiving”
Response Messages

1 “StartDataArchiving ok Data archiving is now active”
2 - Error “StartDataArchiving failure Data archiving is already active”

StartDataArchiving message process:
1) The Client sends the “StartDataArchiving” message.
2) The CDS receives the message and starts data archiving.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 151

3) The CDS sends a response message.
4) The Client receives the message.
StartDataArchivingWithAppend
Description: The Client sends this command to start data archiving. All subsequent data
archiving will be appended to the existing archive files.
Behavior: The CDS will send an “ok” token on success otherwise a failure token is sent. The
CDS will send the response after the data archiving is initiated. A failure condition is triggered if
the CDS is already in an active data archiving state when the command is received.

Request Message

“StartDataArchivingWithAppend”
Response Messages

1 “StartDataArchivingWithAppend ok Data archiving is now active”
2 - Error “StartDataArchivingWithAppend failure Data archiving is already active”

StartDataArchivingWithAppend message process:
1) The Client sends the “StartDataArchivingWithAppend” message.
2) The CDS receives the message and starts data archiving.
3) The CDS sends a response message.
4) The Client receives the message.
StopDataArchiving
Description: The Client sends this command to stop data archiving. All data not currently
archived will be flushed to disk and the CDS will discontinue saving data.
Behavior: The CDS will send an “ok” token on success otherwise a failure token is sent. The
CDS will send the response after flushing the data and archiving is stopped. A failure condition
is triggered if the CDS is not in an active data archiving state when the command is received.

Request Message

“StopDataArchiving”
Response Messages

1 “StopDataArchiving ok Data archiving is now inactive”
2 - Error “StopDataArchiving failure Data archiving is already inactive”

StopDataArchiving message process:
1) The Requestor sends the “StopDataArchiving” message.
2) The CDS receives the message and stops data archiving.
3) The CDS sends a response message.
4) The Requestor receives the message.

ResetDataArchiving

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 152

Description: This commands the CDS to stop data archiving followed by restarting data
archiving. Any saved data will be discarded and the archive data files will be truncated.
Behavior: The CDS will send an “ok” token after data archiving has been fully stopped and the
restart of data archiving has been initiated.

Request Message

“ResetDataArchiving”
Response Messages

1 “ResetDataArchiving ok Data archiving is now active”

ResetDataArchiving message process:
1) The Requestor sends the “ResetDataArchiving” message.
2) The CDS receives the message and resets data archiving.
3) The CDS sends a response message.
4) The Requestor receives the message.
ResetDataArchivingWithAppend
Description: This commands the CDS to stop data archiving followed by restarting data
archiving. All subsequent data archiving will be appended to the existing archive files.
Behavior: The CDS will send an “ok” token after data archiving has been fully stopped and the
restart of data archiving has been initiated.

Request Message

“ResetDataArchivingWithAppend”
Response Messages

1 “ResetDataArchivingWithAppend ok Data archiving is now active”

ResetDataArchivingWithAppend message process:
1) The Requestor sends the “ResetDataArchivingWithAppend” message.
2) The CDS receives the message and resets data archiving.
3) The CDS sends a response message.
4) The Requestor receives the message.
IsDataArchiving
Description: This command will check if the CDS is archiving data.
Behavior: The CDS will send an “ok” token along with a true token if data is currently being
archived, otherwise a false token is returned.

Request Message

“IsDataArchiving”
Response Messages

1 “IsDataArchiving ok <true, false>”

Message Process:

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 153

1) The Requestor sends the “IsDataArchiving” message.
2) The CDS sends a response message.
3) The Requestor receives the message.

7.2.8 Nulling Commands and Information
StartAircraftNulling
Description: This commands the CDS to start Aircraft group nulling. The CDS will collect 15
seconds worth of data for all parameters within the Aircraft nulling group, compute the average
value over that time span then calculate the bias based on the difference between the baseline and
average values and update the config with the results.
Behavior: The CDS will send an “ok” token on success otherwise a failure token is sent. The
CDS will send the response after initiating the nulling process in order to not block the requestor.
A failure condition is triggered if the CDS is unable to initiate the nulling process due to system
error.

Request Message

“StartAircraftNulling”
Response Messages

1 “StartAircraftNulling ok Nulling sequence is now started”
2 - Error “StartAircraftNulling failure Nulling sequence could not be started”

StartAircraftNulling Message Process:
1) The Requestor sends the “StartAircraftNulling” message.
2) The CDS sends a response message.
3) The Requestor receives the message.
IsAircraftNulling
Description: The Client sends this command to check whether the CDS has completed Aircraft
group nulling.
Behavior: The CDS will send an “ok” token along with a true token if Aircraft group nulling has
been completed, otherwise a false token is returned.

Request Message

“IsAircraftNulling”
Response Messages

1 “IsAircraftNulling ok <true, false>”

IsAircraftNulling message process:
1) The Requestor sends the “IsAircraftNulling” message.
2) The CDS sends a response message.
3) The Requestor receives the message.
StartWeaponsBayNulling

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 154

Description: This commands the CDS to start Weapons Bay nulling. The CDS will collect 15
seconds worth of data for all parameters within the Weapons Bay nulling group, compute the
average value over that time span then calculate the bias based on the difference between the
baseline and average values and update the config with the results.
Behavior: The CDS will send an “ok” token on success otherwise a failure token is sent. The
CDS will send the response after initiating the nulling process in order to not block the requestor.
A failure condition is triggered if the CDS is unable to initiate the nulling process due to system
error.

Request Message

“StartWeaponsBayNulling”
Response Messages

1 “StartWeaponsBayNulling ok Nulling sequence is now started”
2 - Error “StartWeaponsBayNulling failure Nulling sequence could not be started”

StartWeaponsBayNulling message process:
1) The Requestor sends the “StartWeaponsBayNulling” message.
2) The CDS sends a response message.
3) The Requestor receives the message.
IsWeaponsBayNulling
Description: The Client sends this command to check whether the CDS has completed Weapons
Bay group nulling.
Behavior: The CDS will send an “ok” token along with a true token if Weapons Bay group
nulling has been completed, otherwise a false token is returned.

Request Message

“IsWeaponsBayNulling”
Response Messages

1 “IsWeaponsBayNulling ok <true, false>”

IsWeaponsBayNulling message process:
1) The Requestor sends the “IsWeaponsBayNulling” message.
2) The CDS sends a response message.
3) The Requestor receives the message.

7.2.9 Data Compression Commands and Information
StartDataCompression
Description: This command will cause the CDS to start building a zip file of the IADS data
archive.
Behavior: The CDS will return a “Starting” message to the requestor.

Request Message

“StartDataCompression”

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 155

Response Messages

1 “StartDataCompression ok Starting”
2 - Error “StartDataCompression failure Already Running”

StartDataCompression message process:
1) The Requestor sends the “StartDataCompression” message.
2) The CDS sends a response message after starting the compression.
3) The Requestor receives the message.
IsDataCompressionRunning
Description: This command will cause the CDS to return if the data compression is running and
at what state.
Behavior: The CDS will return a true token and the particular process status or a False token of
the compression is finished.

Request Message

“IsDataCompressionRunning”
Response Messages

1 “IsDataCompressionRunning True Compressing”
2 “IsDataCompressionRunning True Building”
3 “IsDataCompressionRunning True Copying”
4 “IsDataCompressionRunning False Finished”

IsDataCompressionRunning message process:
1) The Requestor sends the “IsDataCompressionRunning” message.
2) The CDS sends a response message.
3) The Requestor receives the message.
GetDataCompressionStatus
Description: This command will cause the CDS to return the data compression processing status.
Behavior: The CDS will return a true token and the particular process status or a False token of
the compression is finished.

Request Message

“GetDataCompressionStatus”
Response Messages

1 “GetDataCompressionStatus Ok <TotalFilesToCompress,TotalFilesCompressed>”

GetDataCompressionStatus Message Process:
1) The Requestor sends the “GetDataCompressionStatus” message.
2) The CDS sends a response message.
3) The Requestor receives the message.
GetDataCompressionError

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 156

Description: This command will cause the CDS to return the data compression error string.
Behavior: The CDS will return a “True” token followed by the error string if an error did occur;
otherwise a “False” token is sent indicating no error.

Request Message

“GetDataCompressionError”
Response Messages

1 “GetDataCompressionError ok True <Error String>”
2 “GetDataCompressionError ok False”

GetDataCompressionError message process:
1) The Requestor sends the “GetDataCompressionError” message.
2) The CDS sends a response message.
3) The Requestor receives the message.
StopDataCompression
Description: This command will cause the CDS to start building a zip file of the IADS data
archive.
Behavior: The CDS will return a “Stopping” message back to the requestor.

Request Message

“StopDataCompression”
Response Messages

1 “StopDataCompression ok Stopping”
2 - Error “StopDataCompression failure Already Stopped”
3 - Error “StopDataCompression failure Stop command rejected”

StopDataCompression message process:
1) The Requestor sends the “StopDataCompression” message.
2) The CDS sends a response message after stopping the compression.
3) The Requestor receives the message.
ShutDown
Description: This commands the CDS to gracefully shutdown and exit the application.
Behavior: The CDS will return an “ok” token back to the requestor prior to initiating the
shutdown.

Request Message

“ShutDown”
Response Messages

1 “ShutDown ok”

ShutDown message process:
1) The Requestor sends the “ShutDown” message.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 157

2) The CDS sends a response message before shutting down and exiting.
3) The Requestor receives the message.

7.2.10 Run State Information
GetCdsStartInfo
Description: This commands the CDS to return the completion and success status of the CDS
data acquisition startup process initiated by the “StartData” command.
Behavior: The CDS will return an “ok” token followed by two status tokens representing CDS
data acquisition startup process completion and success with the former stating “true” if the CDS
has completed the data start process, otherwise “false” and the latter stating “true” if the CDS
data start process was successful, otherwise “false”.

Request Message

“GetCdsStartInfo”
Response Messages

1 “GetCdsStartInfo ok <true, false> <true, false>”

GetCdsStartInfo message process:
1) The Requestor sends the “GetCdsStartInfo” message.
2) The CDS sends a response message.
3) The Requestor receives the message.
GetCdsStopInfo
Description: This commands the CDS to return the completion status of the CDS stop data
acquisition process initiated by the “StopData” or “ShutDown” commands.
Behavior: The CDS will return an “ok” token followed by “true” if the CDS has completed the
data stop process, otherwise “false”.

Request Message

“GetCdsStopInfo”
Response Messages

1 “GetCdsStopInfo ok <true, false>”

GetCdsStopInfo message process:
1) The Requestor sends the “GetCdsStopInfo” message.
2) The CDS sends a response message.
3) The Requestor receives the message.
GetPredictedAggRate
Description: This commands the CDS to return the predicted aggregate sample rate of the active
data source parameters being processed by the CDS based on the ParameterDefaults table of the
configuration file.
Behavior: The CDS will return an “ok” token followed by the predicted aggregate rate.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 158

Request Message

“GetPredictedAggRate”
Response Messages

1 “GetPredictedAggRate ok <Predicted Aggregate Rate>”

GetPredictedAggRate Message Process:
1) The Requestor sends the “GetPredictedAggRate” message.
2) The CDS sends a response message.
3) The Requestor receives the message.

7.2.11 Data Source Information
GetOmegaInfo
Description: This commands the CDS to return data flow information when attached to an
Omega 3000 data source.
Behavior: The CDS will return an “ok” token followed by four tokens: the overflow count
returned from the data source to the Omega IOM during data packet reads, the aggregate sample
count from all data packets received up to this point, the aggregate data packet count and the
actual sample rate aggregate from the data source.

Request Message

“GetOmegaInfo”
Response Messages

1 “GetOmegaInfo ok <Overflow count> <Sample count> <Buffer Count> <Aggregate
sample rate>”

GetOmegaInfo message process:
1) The Requestor sends the “GetOmegaInfo” message.
2) The CDS sends a response message.
3) The Requestor receives the message.
GetOmegaDecomStatus
Description: This commands the CDS to return the values of all decom status words defined in
the active parameter list of the upstream Omega project.
Behavior: The CDS will return an “ok” token along with the total number of decom status words
followed by a series of stream names and raw status words for each instance separated by “|”.

Request Message

“GetOmegaInfo”
Response Messages

1 “GetOmegaDecomStatus ok <Total status words> <Status number> <Stream name>
<Status word> | <Status number> <Stream name> <Status word> | …”

GetOmegaDecomStatus Message Process:
1) The Requestor sends the “GetOmegaDecomStatus” message.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 159

2) The CDS sends a response message.
3) The Requestor receives the message.

7.2.12 System-wide Information
GetCdsSystemInfo
Description: This commands the CDS to return the various system information.
Behavior: The CDS will return an “ok” token followed by various system information tokens
separated by spaces.
Data Source Specific: No

Request Message

“GetCdsSystemInfo”
Response Messages

1 “GetCdsSystemInfo ok <CPU 1 Utilization> <CPU 2 Utilization> <CPU 3 Utilization>
<CPU 4 Utilization> <Total primary disk size in bytes> <Free primary disk size in
bytes> <Total auxiliary disk size in bytes> <Free auxiliary disk size in bytes> <Total
virtual memory> <Used page memory> <Total physical memory> <Used physical
memory> <Current IRIG time> <Data source control type (file, network)> <CDS
version> <Series of CPU number and utilization for all CPUs> <Data acquisition internal
queue length> <Archive request internal queue length> <Archive write internal queue
length> <OA IAP internal queue length> <Config update internal queue length>”

GetCdsSystemInfo Message Process:
1) The Requestor sends the “GetCdsSystemInfo” message.
2) The CDS sends a response message.
3) The Requestor receives the message.
GetFrontEndType (Primary source only)
Description: This commands the CDS to return the data source type. This currently only
specifies the primary data source.
Behavior: The CDS will return an “ok” token followed by the primary data source type.
Data Source Specific: Not currently

Request Message

“GetFrontEndType”
Response Messages

1 “GetFrontEndType ok
<OS90,MCS,SYS500,OMEGA,VISTA,S6200,CUSTOM,Unknown>”

GetFrontEndType message process:
1) The Requestor sends the “GetFrontEndType” message.
2) The CDS sends a response message.
3) The Requestor receives the message.
GetNumDecomStreams

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 160

Description: This commands the CDS to return the total number of decom status streams as
defined by the upstream data sources.
Behavior: The CDS will return an “ok” token followed by the number of decom status streams.
Data Source Specific: Not currently

Request Message

“GetNumDecomStreams”
Response Messages

1 “GetNumDecomStreams ok <Total decom status streams>”

GetNumDecomStreams message process:
1) The Requestor sends the “GetNumDecomStreams” message.
2) The CDS sends a response message.
3) The Requestor receives the message.
GetBaseDataSourceInfo (All data sources)
Description: This commands the CDS to provide various information for all active data sources.
Behavior: The CDS will return an “ok” token along with the total number of active data sources
followed by a series of data source types and number of decom status streams for each instance
separated by “|”.
Data Source Specific: Yes

Request Message

“GetBaseDataSourceInfo”
Response Messages

1 “GetBaseDataSourceInfo ok <Total data sources> | <Data source 1 type, Number decom
status streams> | <Data source 2 type, Number decom status streams>…”

GetBaseDataSourceInfo Message Process:
1) The Requestor sends the “GetBaseDataSourceInfo” message.
2) The CDS sends a response message.
3) The Requestor receives the message.

C++ Source Code Example
Note: This example is for demonstration purposes only and may not to compile as written.
Note: Many languages, such as V, C#, C and C++ provide their own socket routines that will
work with the IADS CDS Command interface.

// Creates a socket connection to the IADS Commander

ClientSocket* clientSocket = new ClientSocket(port, host) ;

if(clientSocket == NULL)

{

 printf("Error: Socket Interface Creation Error...\n") ;

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 161

 exit(1) ;

}

// Clients make an active connect

printf("- Waiting to Connect to Service\n") ;

if(clientSocket->Connect(-1) == 0)

{

 printf("Error Client Unable to make Active Connect...\n") ;

 exit(1) ;

}

printf("- Client Connected...\n\n") ;

// Construct and send the message

char message[500];

strcpy(message, “IsTimeValidated”) ;

if(clientSocket->send(message, 500) == 0)

{

 return 0 ;

}

char responsee[500] ;

// CDS doesn't guarantee the message to be null terminated

response[499] = '\0';

if(clientSocket->recv(response, 500) == 0)

{

 return 0;

}

// Token 1 is the message name

// Token 2 is the Ok or Failure token

// Token 3 is the response

char token1[500], token2[500], token3[500];

// Replace with your own get token function

GetToken(response, token1, 0, ‘ ‘);

GetToken(response, token2, 1, ‘ ‘);

GetToken(response, token3, 2, ‘ ‘);

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 162

// Check if we got an Ok or Failure

if(strcmpi(token1, “failure”)==0)

{

 return 0 ;

}

// output the response to the console

// true means the CDS has validated time, false means it has not.

printf(“Response Message: %s\n”, token3);

delete clientSocket;

Undocumented Messages
Message Description

StartStatistics Not released
StopStatistics Not released
IsStaticsOn Not released
IsStaticsConnected Not released
GetParameterStatOverflows Not released
GetBeloBoxInfo Obsolete
GetBeloBoxDecomStatus Obsolete

7.2.13 Startup IADS Command Line Options
The following command line options are necessary if using the IADS Commander to start the
IADS CDS or IADS Client applications in a real time environment. A complete list of all IADS
command line options is available in the IADS Help System.
IADS Client: Use only one of the following startup arguments, either /server or /startupFile.

Argument

/server HOSTNAME
For example: /server IADS-CDS
/startupFile FILEPATH
For example:
/startupFile C:\ProgramFiles\IADS\ClientWorkstation\Client.iads.iadsStartupFile

IADS CDS:
Argument

/startupFile FILEPATH
For example:
/startupFile ….\IADS\ComputeDataServer\CDS.ComputeDataServer.iadsStartupFile

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 163

7.3 IADS Server (CDS) Data Throughput Performance Testing
This tutorial provides instruction on setting up the CdsStress program in order to test data

throughput performance, including total CPU, memory access and the archiving system of the
CDS on your server PC. This program does NOT test the complete system performance
including functions such as nulling, client data access and database updates in real time.

The CdsStress program was written to help end users determine their system’s
performance capabilities for the CDS. Currently on machines such as Dell’s 2950 the CDS can
process 64000 parameters at 1 Mega sample aggregate data rate. Performance may vary
depending on the Server’s capabilities and the network performance to the data source sender.

7.3.1 Overview
The CdsStress kit is available for download on the Curtiss Wright IADS website at

https://iads.symvionics.com/support/programming-examples/ Data Processing Examples: 3. CDS
Performance Analysis Program and includes:
1) CdsStress.exe - The simulated data source program. It easily allows increasing the data

throughput, the number of parameters and the sample rate mix to efficiently simulate a real-
world data scenario; it automatically creates the IADS Configuration file (the IADS
database) and the CDS parameter definitions (PRN) files used by the CDS.

2) parmInfo.txt -The input file to the CdsStress program for setting up the various data output
rates. This file is edited by the user to set the data throughput rate of the CdsStress program.

3) iadsCDS.init - The input file to set the CDS run-time properties settings.
Note: This kit does not include the IADS Server (ComputeDataServer.exe) or IADS Client
(Iads.exe) executables.

7.3.2 To run the data throughput test
1) Download the CdsStress program kit referenced above and unzip all the files onto your

system. If you put all files in a directory you create at C:\CdsFiles the IadsCds.init will not
need to be modified greatly.

2) Right-click on the CdsStress.exe > Create Shortcut.
3) Right-click On the CdsStress.exe - Shortcut > Properties. At the end of the Target line enter:

CDS/StartupFile c:\CdsFiles\IadsCDS.init

https://iads.symvionics.com/support/programming-examples/

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 164

4) Double-click on the shortcut to run the CdsStress program. The IADS Configuration file and
PRN file will output to the CdsFiles directory.

5) Modify the “LOCATION1” property in the iadsCDS.init file to point to the correct data

archive file path.
LOCATION1 = C:/CdsFiles/IadsOutputFiles
POSTFLIGHTCONFIG = C:/CdsFiles/IadsOutputFiles/pfConfig

6) Modify the “DATALOCATION” property to point to the PC that the CdsStress program is
running on (The ”Port Id” does not need to be modified).
DATALOCATION = Pat3600 49000

7) Run the CDS. The CDS uses the property settings in the IadsCds.init file to locate the prn
and config files; and connect to the CdsStress data source program. Enter a “20” on the CDS
screen to validate the IADS Configuration. Once complete, enter a “30” to start real time. If
everything is setup correctly then the CDS will start receiving data and validate time.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 165

The primary test is to run the system and monitor CDS memory usage. Because the CDS is
designed to use memory on a demand basis any overrun conditions are determined by an ever
increasing memory usage on the Server PC which can be monitored by using the Windows
Task Manager. Each test may take up to an hour before memory usage stabilizes.
Another test is to connect an IADS Client to the CDS and examine the IRIG time on the
dashboard with time output of the CdsStress program and verify that they continue to match.

8) Enter a “99” on the CDS menu and the application will shut down. This may take a few
minutes to close the archive files. The CdsStress program will then be ready for another
connect, therefore it can continue to run. However it will need to be re-launched if another
data throughput set is setup in the parmInfo.txt file.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 166

8. Other

8.1 Iadsread Matlab Extension
The iadsread.mexw32 and iadsread.mexw64 MEX-files are included as part of the IADS

installation at \Program Files (x86)\Iads\MatlabExtention. The iadsread function allows you to
programmatically access your IADS archive data so you can write Matlab programs to read in
and process the IADS flight data.
To set the path in Matlab to your IADS Matlab Extension directory:
1) Run Matlab.
2) Click the File drop down > Set Path...
3) In the Set Path dialog, click the Add Folder button.
4) Navigate to C:\ProgramFiles\Iads\MatlabExtention and click OK.
5) Click the Save button.
6) Click the Close button.
To verify the iadsread function is available in Matlab:
In Matlab, enter iadsread in the Command Window. It should respond: ??? iadsread: Minimum
four inputs required. This is correct! The error occurs because the function call arguments are not
complete; follow the instructions below to setup the iadsread function. If ??? Undefined function
or variable 'iadsread' is returned, verify the path you have set and saved in Matlab is the
MatlabExtention directory that contains your iadsread.mexw32/64 or the iadsread.dll. If the error
still occurs, the version of Matlab you are using (pre 7.1) does not recognize the
iadsread.mexw32 file. Rename the iadsread.mexw32 to iadsread.dll. For more information on
this subject go to: http://www.mathworks.com/access/helpdesk/help/techdoc/rn/f26-998197.html
To use the iadsread function:
In Matlab, enter the iadsread function with a required minimum of four inputs (with the
exception of the iadsread('DataDirectory')
Syntax
Variable = iadsread('DataDirectory or ServerName$PortId', 'IrigStartTime', 'IrigEndTime' or
NumSeconds, 'ParameterNameList (Comma Separated)', [optional arguments..])
Examples

Data = iadsread('D:\PostTestData\TestSet','001:00:05:05',5,'AB1001X,AB1002X,AB1003X')
Data =
iadsread('D:\PostTestData\TestSet','001:00:05:05',5,'AB1001X,AB1002X,AB1003X','Decimatio
nFactor',4,'ReturnTimeVector',1)
Notice that all 5 parameters are combined into 1 matrix called Data. That is because only 1
variable was assigned to the result of iadsread, Data = iadsread(...). To create 3 separate vectors,
define the left hand side of the equation as such: [AB1001X,AB1001X,AB1001X] = iadsread(...)

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 167

Syntax Example Result
Note: If you assign the output to a variable, for example, Data = iadsread(...) it will return the results in a
structure ('struct array'). You can then use the Plot function in Matlab to plot the data, for example, plot (Data)
iadsread
('DataDirectory')

Data=iadsread
('D:\PostTestData\
TestSet')

Returns test data such as Start/Stop Time, Test,
Date, etc...

Iadsread
('DataDirectory', ' ', 0, '?')

Data=iadsread
('D:\PostTestData\
TestSet', ' ', 0, '?')

Returns a list of the parameters in the archive by
putting a '?' question mark in argument 4. iadsread
ignores the contents of arguments 2 & 3.

Iadsread
('DataDirectory|ConfigFile'), '
', 0, '?')

Data=iadsread
('D:\PostTestData\Fol
der1|D:\PostTestData\
Folder12\fpConfig1','',
0,'?')

Returns a list of the parameters from the specified
config file by putting a '?' question mark in
argument 4. iadsread ignores the contents of
arguments 2 & 3.

iadsread('DataDirectory', ' ', 0,
'Parameter')

Data=iadsread('D:\
PostTestData\TestSet',
' ', 0, AB1001X')

Returns all the information for the parameter in
argument 4.

iadsread('DataDirectory', ' ', 0,
'Select Value1 from Table/Log
where [Optional] Value2 =
Value3')

Data=iadsread(
'D:\PostTestData\Test
Set', ' ', 0, 'Select Time
from EventMarkerLog
where Comment =
Takeoff')

Returns any piece of information in the
configuration file through the use of an SQL
statement. To use a wild card match, place
asterisks around the wild card.

Note: Incorrect spacing can cause errors.
Input arguments:
Argument 1 - 'DataDirectory or ServerName$PortId (required)'
This string defines the directory of the IADS data archive. Use your 'Explorer' to locate the
directory of your choice. Copy the directory from the top of explorer into Matlab.
Another option is to specify a server name and port id in the format 'ServerName$PortId' to
connect iadsread directly to a real time data stream in the IADS Server. If you wanted to stream
through the entire flight while connected to the IADS Server. Leave the 'IrigStartTime' field as
an empty string and you will set the 1st argument (DataDirectory or ServerName$PortId) to the
IADS Server machine name and portId. Don't forget to separate the ServerName and PortId by a
$ (dollar sign). The default portId of the IADS Server is 58000 (unless this setting has been
modified this should work).
For example: Alt = iadsread('IADSServer$58000', '', 20, 'SineWave0-250')
Argument 2 - 'IrigStartTime' (required)
This string defines the start time of the data that you want to import. The Irig time string format
is DDD:HH:MM:SS.MS That is a 3 digit day (0-364), a two digit hour (0-23), a two digit
minute (0-59), a two digit second (0-59), and a partial second (MS) up to 9 digits long. This time
will most likely be obtained from the IADS Event Marker or Test Points Logs.
Argument 3 - 'IrigEndTime' or NumberOfSeconds (required)

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 168

This string defines the end time of the data that you are interested in. The Irig time string format
is DDD:HH:MM:SS.MS Another alternative is to specify a "scalar" number of seconds from the
start time.
Argument 4 - 'Parameter(s) or SQL statement (required)'
This string defines a list of parameter(s), comma separated (with no spaces between the commas)
that you want to import data from. The Parameter name is that defined in the Parameter Defaults
Table.
SQL Statement - 'select <ColumnName or Comma Separated ColumnNames> from
<TableName> where <Conditional Statement>'
The "where <Conditional Statement>" statement is Optional. In this format, the <ColumnName>
and <TableName> refers to the name of the column in any IADS log or table in the
Configuration Tool.
Optional Arguments - Start of Matlab Style (optional settings)
1. 'DecimationFactor', factor 1..N (Defaults to 1 which denotes no decimation). This gives you

the ability to reduce the amount of data from the actual parameter’s update rate. If not
defined, it defaults to 1 (no decimation). The decimation is always based on the largest
sample rate of the parameters defined in Argument 4. For example, if you wanted a matrix of
data that represents half of the original data, you would enter 2. Decimation only removes
data points using a "Decimal Sub-Sample' of your original data (i.e. skips every N points).
No other interpolation method (such as linear or bspline interpolation) is currently used. Be
aware, if you use this option, you do have the possibility of removing data that is important
to your analysis. This argument used in the example is: 'DecimationFactor',4

2. 'OutputSampleRate', sampleRate (Defaults to highest sample rate of parameters chosen.
Trumps DecimationFactor). Similar to Decimation factor above, but specifies the exact
output sample rate desired. For example, 'OutputSampleRate',50

3. 'ReturnDataAtSameSR', 0=False 1=True (Defaults to True) Controls whether the data is
interpreted to same sample rate as defined by DecimationFactor or OutputSampleRate. By
default, the iadsread function "squares off" the data to same sample rate making it easier to
analyze. If this option is set to 0 (False) then each vector is output at its native sample rate
and thus the lengths of each vector may vary. In this state, the interpolation/correlation is left
to the user code.

4. 'ReturnTimeVector', 0=False 1=True (Defaults to False) Controls whether a time vector is
returned along with the data vector(s). The vector contains current time for each element of
the corresponding data vector elements.

5. 'ExceptionOnNoData', 0=False 1=True (Defaults to True). Determines whether iadsread
throws an error/exception if it is unable to get data for a given parameter. If False, returns
empty Vector or if Matrix fills column with NaN.

Note: For additional information on the iadsread function see the Howto.m file at
\ProgramFiles\Iads\MatlabExtention.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 169

8.2 Iadsread for Python
This section describes the installation and usage of the IADS data interface iadsread for

Python (modified version of the one for VB Script, VB.Net, C#, and C++). The library contains
the code to interface to your existing IADS data archives (files) is contained within the
"IadsDataInterfaces.dll". For those familiar with the Matlab version of iadsread, this is almost
identical. Only a few changes have been made to stay compatible with the new languages. Pay
close attention to the return data format and also the change in the 'Optional' param value/pair
argument. Proper installation of these files will add a function to the system called
"IadsDataInterfaces.iadsread", allowing you to programmatically access your IADS archive data.
You will then be able to write scripts or other programs to read in and process the store of flight
data you have saved with IADS. Just to note, the iadsread function can get data from any
parameter within an IADS archive, including derived parameters. If you have already installed
IADS on this machine, both the 32 and 64-bit versions of IadsDataInterfaces.dll may be present
in your C:\Program Files\IADS\Common directory and "registered". Confirm that you have the
IadsDataInterfaces.dll in this location and you should be ready to proceed. If IADS is not already
installed, simply create a folder on your PC (i.e. C:\Program Files\Iads\Common) and copy the
IadsDataInterfaces.dll to this directory. Once the file is copied you will need to "register" this dll
on your PC. To do this, double click on the file in Windows Explorer. When asked what
executable to run, browse to the C:\Windows\System32 directory and choose the "regsvr32.exe"
file. Once this is complete, you should get a confirmation dialog that it is properly registered. If
this does not work, you may have to contact your IT department to have them run regsvr32.exe
as Administrator from a command prompt.

To test that the 'iadsread' function is ready to go, open up a script editor (such as PythonWin) and
type:

import win32com.client
IadsDataInterfaces = win32com.client.Dispatch("IadsDataInterfaces.iadsread")
UsageString = IadsDataInterfaces.iadsread()

Upon execution, the value of "UsageString" should be something like:

iadsread: Minimum 4 inputs required. iadsread: Minimum 4 inputs required. Iadsread
("DataDirectoryOrServerName", "IrigStartTime", "IrigEndTime" or NumSeconds,
"ParameterNameList (Comma Separated)", [optional]param/value pairs as described below)

Actually, this is correct! This means that your dll file is properly hooked up and will error
because the function call arguments are not quite complete. If the function returns with "Invalid
function or procedure" your dll is not correctly registered. Make sure you complete the dll
registration process above. If you get an error about variable type mismatch, note that the
iadsread function can return strings or arrays and needs a variable of type "variant" to receive it
(not a variant array).

iadsread("DataDirectoryOrServerName", "IrigStartTime", "IrigEndTime" or NumSeconds,
"ParameterNameList (Comma Separated)", [optional]":Param/Value Pairs" as described below)

Input arguments:

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 170

Argument 1 - DataDirectory or ServerName$PortId or DataDirectory|ConfigFile
This string defines the source data directory of the IADS archive data for your Flight. Most flight
data is arranged in a system of directories by flight/test/tail or data on a server within your local
network. The specific location is group dependent. Use your 'Explorer' to locate the directory of
your choice. Then just simply copy the directory from the top of explorer into your function (be
sure to put quotes around the string). The value should be your FULL directory path (with drive
letter) to your IADS archive data. My data directory for this example is:
"D:\PostFlightData\Demo"
Another option is to specify a server name and port id in the format "ServerName$PortId" to
connect iadsread directly to a real time data stream in the IADS Server (CDS) or Post Test Data
Server. There is example code on this subject below.
A final option is to specify a DataDirectory and a separate config file in the format
'DataDirectory|ConfigFile' This will allow you to use a config file other than the default pfConfig
within the DataDirectory. An example of this would be
D:\PostFlightData\Demo|D:\SomeOtherDirectory\pfConfig
Use this option with care. You should be aware that the derived parameters and meta data for a
given archive may not be valid or relevant for another archive.

Argument 2 - IrigStartTime
This string argument is the start time of the data that you want to import. The format of the string
is IRIG time in the format “DDD:HH:MM:SS.MS” this is a 3 digit day (0-364), a two digit hour
(0-23), a two digit minute (0-59), a two digit second (0-59), and a partial second (MS) up to 9
digits long. This time will most likely be obtained from your flight notes or the IADS
EventMarker Log. This interface also has the ability to supply you with your
TestPoint/Maneuver start/end times for each flight. Let me know if you have any other ideas.

Argument 2 - IrigEndTime or NumSeconds
This string argument is the end time of the data that you are interested in. The Format of the
string is an IRIG time in the format DDD:HH:MM:SS.MS again. Your other alternative to is just
to specify an integer number of seconds. You could, for example, get 10 seconds of data from a
given start time.

Argument 4 - ParameterNameList
This string argument is a list of comma separated parameter names that you want to import data
from. For example, you could import some aircraft "Wing" parameters by defining a list like:
"AW0001X,AW0002X,AW0003X". Notice the name is the "Parameter" name defined in the
config file's "ParameterDefaults Table" (usually the parameter code)

Note: All filtering and nulling that was set in the ParameterDefaults entry for the specified
parameter is applied before the data is returned to Matlab. Spike detection and wild point
corrections are *not* applied as of this date. We may consider having this as an option.

One more option is being considered for next build: *The DataGroupName option will allow you
to access a group of parameters defined in your config file under the DataGroup table.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 171

Argument 5) - [optional]Start of comma separated "Param/Value Pairs"
Optional Arguments
1. DecimationFactor, factor 1..N (Defaults to 1 which denotes no decimation). This gives you

the ability to reduce the amount of data from the actual parameter's update rate. If not
defined, it defaults to 1 (no decimation). The decimation is always based on the largest
sample rate of the parameters defined in Argument 4. For example, if you wanted a matrix of
data that represents half of the original data, you would enter 2. Decimation only removes
data points using a "Decimal Sub-Sample' of your original data (i.e. skips every N points).
No other interpolation method (such as linear or bspline interpolation) is currently used. Be
aware, if you use this option, you do have the possibility of removing data that is important
to your analysis.

2. OutputSampleRate, sampleRate (Defaults to highest sample rate of parameters chosen.
Trumps DecimationFactor) Similar to Decimation factor above, but specifies the exact output
sample rate desired.

3. ReturnDataAtSameSR, 0=False 1=True (Defaults to True) - Controls whether the data is
interpreted to same sample rate as defined by DecimationFactor or OutputSampleRate. By
default, the iadsread function "squares off" the data to same sample rate making it easier to
analyze. If this option is set to 0 (False) then each vector is output at its native sample rate
and thus the lengths of each vector may vary. In this state, the interpolation/correlation is left
to the user code.

4. ReturnTimeVector, 0=False 1=True (Defaults to False) - Controls whether a time vector is
returned along with the data vector(s). The vector contains current time for each element of
the corresponding data vector elements. If ReturnDataAtSameSR=False then returns
time/data in a struct (not implemented yet).

5. TimeFormat, 0=SecondsSinceNewYear 1=IRIGTimeString (Defaults to
SecondsSinceNewYear) - Controls format of the time vector returned along with the data
vector(s). The values are either a count of total seconds since New Year or an IRIG String
formatted as DDD:HH:MM:SS.MS. Note that the IRIGTimeString option is only available in
vector format, so you must supply an output variable for time as well as each item in the
parameter name list.

6. ExceptionOnNoData, 0=False 1=True (Defaults to True) - Determines whether iadsread
throws an error/exception if it's unable to get data for a given parameter. If False, returns
missing values with Empty (VT_EMPTY). An example of using optional args is as follows:
IadsDataInterfaces.iadsread(directory, "001:01:01.000", 5, "Param1,Param2,Param3",
"DecimationFactor,4,ReturnTimeVector,1")

Ok, let's proceed to a concrete example... Let's get some information on data from an IADS
archive using 'iadsread'. Find a directory on your system with IADS data using Microsoft
Explorer. Copy the directory name using <Ctrl C> and paste it into the <Insert Your Data
Directory Here> below:

ArchiveInfo = IadsDataInterfaces.iadsread("<Paste Your Data Directory Here>") The system
should respond with some information about the data within this directory including its

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 172

StartTime, StopTime, DataDir, FlightId, TestId, TailId. The results inside of the ArchiveInfo
variable is a double dimension array. The first row contains all of the property names (as
described in the last sentence). The second row contains all the values of these properties. Please
recall the VB accesses array using the Array (Row, Column) format, with zero based index
values.

Example:
ArchiveInfo[0][0] is the first row first value (which in this case is the property name
"StartTime")
ArchiveInfo[0][1] is the first row second value (which in this case is the property name
"StopTime")
ArchiveInfo[0][2] is the first row third value (which in this case is the property name
"DataDirectory") etc.. and now for the actual values of these properties for your specific flight...
ArchiveInfo[1][0] is the second row first value (which in my case is the value
"001:00:00:00.000")
ArchiveInfo[1][1] is the second row second value (which in my case is the value
"001:02:00:00.000")
ArchiveInfo[1][2] is the second row third value (which in my case is the value
"D:\PostFlightData\Demo") and so on..
Now, let's say you want to know what parameters are available in an archive... To achieve this,
we put a '?' (Question Mark) in the ParameterList (argument number 4)
My line looks like this > IadsDataInterfaces.iadsread("D:\PostFlightData\Demo", "", 0, "?")
(iadsread ignores contents of arguments 2 & 3)
Type the line below into your script editor inserting your own dir into the <Insert Your Data
Directory Here> text
ParameterList = IadsDataInterfaces.iadsread("<Paste Your Data Directory Here>", "", "", "?")
The system should respond with the list of parameters defined in your ParameterDefaults table
ParameterList will be an array of Strings containing all the parameters. In my case:
ParameterList[0] = "DV1"
ParameterList[1] = "IABALT"
ParameterList[2] = "IIIALT"
ParameterList[3] = "IATASP", etc
You can use the UBound and a for loop to iterate though the parameters:
For index = 0 To UBound(ParameterList)
ParamName = ParameterList(index)
Next
Or by using the For Each statement:
For Each Param In ParameterList
ParamName = Param
Next

Another helpful tool is the ability to look at the settings of an individual parameter. It's just a
small difference from the last line. Put a "?" (Question Mark) in the ParameterList (argument

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 173

number 4) then a <space> then the parameter name you want more information about... My line
looks like this -> InfoOnIABALT = IadsDataInterfaces.iadsread("D:\PostFlightData\Demo", "",
0, "? IABALT")
iadsread returns an array much like the previous 'ArchiveInfo' above with the first row
containing the 'ColumnName' and the second row containing the actual value of the column.
Again, the array is accessed InfoOnIABALT(Row, Column) with zero based indices
InfoOnIABALT[0][0] = "ParameterDefaults" InfoOnIABALT[1][0] = "STRUCTURES"
InfoOnIABALT[0][1] = "Parameter" InfoOnIABALT[1][1] = "PF5032"
InfoOnIABALT[0][2] = "ParamType" InfoOnIABALT[1][2] = "float"
InfoOnIABALT[0][3] = "ParamGroup" InfoOnIABALT[1][3] = "LOADS"
InfoOnIABALT[0][4] = "ParamSubGroup" InfoOnIABALT[1][4] = "Door - Misc"
InfoOnIABALT[0][5] = "ShortName" InfoOnIABALT[1][5] = "LIRCM Bay Pressure"
InfoOnIABALT[0][6] = "LongName" InfoOnIABALT[1][6] = "LIRCM Bay Pressure"
InfoOnIABALT[0][7] = "Units" InfoOnIABALT[1][7] = "psi"
InfoOnIABALT[0][8] = "Color" InfoOnIABALT[1][8] = 16711680
InfoOnIABALT[0][9] = "Width" InfoOnIABALT[1][9] = 1
InfoOnIABALT[0][10] = "DataSourceType" InfoOnIABALT[1][10] = "Tpp"
InfoOnIABALT[0][11] = "DataSourceArguement" InfoOnIABALT[1][11] = "1"
InfoOnIABALT[0][12] = "UpdateRate" InfoOnIABALT[1][12] = "49.3213"
InfoOnIABALT[0][13] = "LLNegative" InfoOnIABALT[1][13] = "-1000"
InfoOnIABALT[0][14] = "LLPositive" InfoOnIABALT[1][14] = "1686"
(values continue...)
Okay, now to extract actual flight data from an IADS archive. Type in the following code. We
need the output from this statement for a reasonable StartTime
ArchiveInfo = IadsDataInterfaces.iadsread("<Paste Your Data Directory Here>")
iadsread returns the values in ArchiveInfo. Recall from a previous time that ArchiveInfo is a
double dimension array with the column names in the first row and values in the second. My data
returns:
ArchiveInfo[0][0] = "StartTime" ArchiveInfo[1][0] = "318:17:37:52.393"
ArchiveInfo[0][1] = "StopTime" ArchiveInfo[1][1] = "318:21:58:51.518"
ArchiveInfo[0][2] = "DataDir" ArchiveInfo[1][2] = "D:\PostFlightData\Demo"
ArchiveInfo[0][3] = "Flight" ArchiveInfo[1][3] = "100"
ArchiveInfo[0][4] = "Test" ArchiveInfo[1][4] = "100-ABC"
ArchiveInfo[0][5] = "Tail" ArchiveInfo[1][5] = "001"
ArchiveInfo[0][6] = "Date" ArchiveInfo[1][6] = "11/14/1998"
Just as an example, let's read the first 5.5 seconds of data from a couple of parameters. Use the
"StartTime" string of "318:17:37:52.393" obtained from ArchiveInfo[1][0] above as the value of

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 174

argument 1. Your second argument should be 5.5 (or any number of seconds). Your third
argument should be a list of comma separated parameter names. Pick parameter names from the
list returned above...My line looks something like this ->
Data = IadsDataInterfaces.iadsread("D:\PostFlightData\Demo", "318:17:37:52.393", 5.5,
"Sweep,SineWave10Hz,SineWave20Hz,SineWave30Hz,SineWave40Hz")
Type the line below into your script editor inserting your own dir, StartTime, and parameter list.
Data = IadsDataInterfaces.iadsread("<Insert Your Data Directory Here>", "<Insert StartTime
String Here>", 5.5, "<Your Parameter List Comma Separated>")
Hint: If you have an error getting data at this StartTime, add a couple of minutes to your start
time. Sometimes data for a given parameter starts later than others...Alternatively, if you knew
the actual StartTime and EndTime of your data, you could use it to define your data of interest.
My line looks something like this:
Data = IadsDataInterfaces.iadsread("D:\PostFlightData\Demo", "318:17:40:53.393",
"318:17:40:54.393", "Sweep,SineWave10Hz,SineWave20Hz,SineWave30Hz,SineWave40Hz",
"DecimationFactor,2")
I requested one second of data from the parameters defined in my list, and I wanted the data at
DecimationFactor of 2 (giving me every other point from the data).
Data = IadsDataInterfaces.iadsread("<Insert Your Data Dir Here>", "<Insert StartTime Here>",
"<Insert EndTime Here>", "<Your Parameter List Comma Separated>, "DecimationFactor,2")
If all is well, you will get the data requested in matrix form (double dimension array
row,column) with the number of columns matching the number of parameters you have
requested and each row being the set of data values.
In my example:
Data[0][0] = FirstValueOfSweepParam
Data[0][1] = FirstValueOfSineWave10HzParam
Data[0][2] = FirstValueOfSineWave20HzParam
Data[0][3] = FirstValueOfSineWave30HzParam
Data[0][4] = FirstValueOfSineWave40HzParam
Data[1][0] = SecondValueOfSweepParam
Data[1][1] = SecondValueOfSineWave10HzParam
Data[1][2] = SecondValueOfSineWave20HzParam
Data[1][3] = SecondValueOfSineWave30HzParam
Data[1][4] = SecondValueOfSineWave40HzParam
And so on....
Let's say that along with data you also want the current value of time. You could do that with the
"ReturnTimeVector" optional argument as follows:
DataWithTimeAsFirstVector = IadsDataInterfaces.iadsread("<Insert Your Data Dir Here>",
"<Insert StartTime Here>", "<Insert EndTime Here>", "<Your Parameter List Comma
Separated>", "DecimationFactor,2,ReturnTimeVector,1")

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 175

The first column DataWithTimeAsFirstVector(0..N,0) will be filled with the actual time stamp of
elapsed seconds since midnight. If you want an ascii IRIG time representation simply add
"TimeFormat,1" to the optional last argument like so:
DataWithTimeAsFirstVector = IadsDataInterfaces.iadsread("<Insert Your Data Dir Here>",
"<Insert StartTime Here>", "<Insert EndTime Here>", "<Your Parameter List Comma
Separated>", "DecimationFactor,2,ReturnTimeVector,1,TimeFormat,1")
Notice that all parameters are combined into 1 matrix called 'Data'. That's because the interface
only allows one variable to the result of iadsread Data = iadsread(..). If you want the data in
separate vectors, you would have to call the iadsread function 3 times. Here is an example below
how to create 3 separate vectors
a = IadsDataInterfaces.iadsread("D:\PostFlightData\Demo", "318:17:40:53.393", 20, "Sweep")
b = IadsDataInterfaces.iadsread("D:\PostFlightData\Demo", "318:17:40:53.393", 20,
"SineWave10Hz")
c = IadsDataInterfaces.iadsread("D:\PostFlightData\Demo", "318:17:40:53.393", 20,
"SineWave20Hz")
The vector 'a' will contain data from the 'Sweep' parameter, 'b' from the 'SineWave10Hz'
parameter, and 'c' from 'SineWave20Hz'
Unlike the multiple parameter requests, these single parameter requests return a single
dimensional array. The data is accessed as:
a(0), a(1), a(2), etc...
To loop through all the values would be similar to the ParameterList above:
For index = 0 To UBound(a)
Value = a(index)
Next
In other words, we don't have to worry about the double dimension (row,column) anymore, but
there are other things to consider.
If for example a, b, and c had different sample rates, we would probably get different amounts of
data in each case. Lining up the values to perform computations will be a difficult task, so be
aware of this fact. When parameters are combined into a matrix, IADS handles this issue by up-
sampling all the parameter to the highest rate in the list (unless overridden by the
'OutputSampleRate' or 'DecimationFactor' optional argument. So, if you want separate vectors,
try using the "OutputSampleRate" option to force matching rates (recommend to upsample to
highest rate).
Writing a program to analyze data should be fairly simple, maybe something like this:
Read in the data from IADS
Data = iadsread("D:\PostFlightData\Demo", "318:17:40:53.393", "318:17:40:54.393",
"Sweep,SineWave10Hz,SineWave20Hz,SineWave30Hz,SineWave40Hz")
Call my analysis function with the data matrix obtained from IADS
b = myAnalysisFunction(Data)
Now output the results

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 176

That should be it for the basics; let's continue on with more advanced subjects.
Here is another example of accessing data sequentially. Say you just wanted to stream through
the entire flight worth of data for a number of parameters and plot them. What you have to do it
call iadsread at least once with a valid start time (and you must use the NumSeconds option in
argument 3). In you next call to iadsread, you leave the StartTime string (argument 2) blank.
This will tell iadsread that you wish to continue reading at the point you left off last. In the
example below, the first call will read 10.0 seconds at time 318:17:40:53. Each sequential call
with '' as the argument 3 value will return the next sequential 10.0 seconds of data.
In order to make this work on your system, you'll have to modify arguments 1,2 & 4 to the
correct values for your archive.
SweepData = IadsDataInterfaces.iadsread("D:\PostFlightData\Demo", "318:17:40:53", 10.0,
"Sweep")
For index = 0 to 100
 plot(SweepData)
 MsgBox "Press ok for next Plot"
 ' Notice that the second argument "IrigStartTime" is a blank string. This will read the next
 SweepData = IadsDataInterfaces.iadsread("D:\PostFlightData\Demo", "", 10.0, "Sweep")
Next

Here is yet another example of accessing data sequentially. Say you just wanted to stream
through the entire flight while connected to the IADS CDS or a Post Test Data Server. It is very
similar to the last example except you'll leave the 'StartTime' field as an empty string and set the
1st argument (DataDirectory or ServerName$PortId) to the CDS or Post Test Data Server
machine name and portId. Don't forget to separate the ServerName and PortId by a $ (dollar
sign). The default portId of the IADS CDS is 58000, so unless you have modified it in the setup
bag this should work.
In order to make this work on your system, you'll have to modify arguments 1 & 4 to the correct
values for your system setup.
Sub TestRealTime2()
 For j = 1 to 100
 Press_Alt = IadsDataInterfaces.iadsread("IADS-CDS$58000", "", 2.0, "SineWave0-250")
 plot(Press_Alt)
 WScript.Sleep 10 ' Allow a little time for the new data. This line may need to be modified
for the scripting environment used
 end
End Sub

New and advanced stuff to query info from the config file
There is now a new capability to query any piece of information in configuration file through the
use of an SQL statement. To achieve this, we must first explain how write a simple SQL
statement.

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 177

The basic format is: 'select <ColumnName or Comma Seperated ColumnNames> from
<TableName> where <Conditional Statement> (The 'where' statement is optional). In this
format, the <ColumnName> refers to the name of the column in any IADS log or in any
ConfigTool window... Likewise, the <TableName> refers to the actual name of the log name or
'Table' name in the ConfigTool. This is a simple and very useful example that extracts every
column from every row in the 'EventMarkerLog' table. If we want to get every row and column,
we must use a 'wildcard' (an '*') for the column name, as well as no 'where' clause....
EventMarkerLogContents = IadsDataInterfaces.iadsread("D:\PostFlightData\Demo", "", 0, "?
select * from EventMarkerLog")
iadsread returns:
5x2 array with field names in row 0 (EventMarkerLogContents[0][0) ..
EventMarkerLogContents[0][5)):
Group
SubGroup
User
Time
Comment
PropertyBag

Examining the second row of the matrix (i.e. the first row of the EventMarkerLog)
EventMarkerLogContents[1][0) .. EventMarkerLogContents[1][5)
Shows:
Group: "LOADS"
SubGroup: "Maneuver Quality"
User: "IadsUser2"
Time: "001:12:40:29.011"
Comment: "E1 APU Start"
PropertyBag: "Each field can be accessed using the proper array index.
EventMarkerLogContents[1][3) would return the time of the event or "010:12:40:29.011"
What if we were only concerned with the 'Time' column information? Let's limit our output to
only the "Time" column like so:
TimeOfEvent = IadsDataInterfaces.iadsread("D:\PostFlightData\Demo", "", 0, "? select Time
from EventMarkerLog")
ColumnName = TimeOfEvent(0,0)
Time = TimeOfEvent(1,0)
iadsread returns:
Time
012:17:49:29.011

Now even more useful... What if we were only concerned with the 'Time' column information
when a certain comment occurred?

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 178

Let's assume that we had a Comment in our 'EventMarkerLog' table that always contained the
word 'Takeoff' and corresponded to the takeoff time of the aircraft. Let's limit our output to only
the 'Time' column when the 'Comment' contained the word 'Takeoff'. Ok, this is where the
'where' clause comes into play. It is a conditional statement that will allow you to filter through
the many rows of a table/log and find the specific row that you need. The query would look
something like:
TimeOfSpecificEvent = IadsDataInterfaces.iadsread("D:\PostFlightData\Demo", "", 0, "? select
Time from EventMarkerLog where Comment = '*Takeoff*' ")
ColumnName = TimeOfSpecificEvent(0,0)
Time = TimeOfSpecificEvent(1,0)
Look at the 'where' clause above.... where Comment = '*Takeoff*'.... Confusing, isn't it? First of
all, the IADS SQL query statement requires that all strings in the 'where' clause be single
quoted... so we need two single quotes around the where clause 'Takeoff' string. We also need to
use a 'Wildcard' match, placing asterisks '*' around the word 'Takeoff'. This tells iadsread to
match any comment that has 'Takeoff' anywhere in it... (i.e. 'E10 Takeoff …' matches)
iadsread returns:
Time
012:18:41:19.247

Thus, the takeoff time of the aircraft is "012:18:41:19.247"
Just remember, you can get to any piece of data in the config file with the proper query.
If you need help to write your SQL statement or explain further, email iads-
support@curtisswright.com.
More examples.......
Test Streaming data for the entire flight into a processing function
IadsDataInfo = IadsDataInterfaces.iadsread("D:\PostFlightData\MyIadsDataDirectory")
This returns a struct array where each field can be accessed by the proper index
Choices are StartTime, StopTime, DataDir, Flight, Test, Tail, and Date
IadsDataInfo(1,0) would return for example: "318:17:37:52.393"
Set block size to read... Basically, the number of seconds to read for each computation
BlockSizeInSecondsToRead = 10
Process all the data for a given set of parameters. Fetch the next Matrix of data using iadsread
until the end it reached

MyParameterList = "Param1,Param2,Param3,Param4"
Done = False
On Error Resume Next
While (Not(Done))

 Err.Clear()

mailto:iads-support@curtisswright.com
mailto:iads-support@curtisswright.com

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 179

 Data = IadsDataInterfaces.iadsread("D:\PostFlightData\MyIadsDataDirectory", StartTime,
BlockSizeInSecondsToRead, MyParameterList)

 If (Err.Number = 0) Then
 ProcessTheData(Data)
 StartTime = ""
 Else
 Done = True
 End If

End
Err.Clear()
On Error Goto 0

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 180

APPENDIX A
IADS Configuration Table Reference

Name Description Type
AircraftReferences Used by Parameter Identification Flat
Aircraft Properties Aircraft properties table Flat
ActualFlutterTestPointsLog Completed flutter test points Flat
ActualLoadsTestPointsLog Completed Loads test points Flat
AnalysisLog Location of saved analysis results Flat
AnalysisWindows User created Analysis Windows Hierarchical
AttachedDataDisplays List of displays attached to AWs Hierarchical
FlutterSummaryLog Ongoing collection of flutter results Flat
DataStorageInformation Data Information from a real-time test Flat
CurrentFlightInformation Table of the current flight test Flat
Classifications List of available classifications Flat
GroupDefinitions List of available classification strings Flat
PredefinedComments Pre-defined event marker strings Flat
Constants User defined constants Flat
DataDisplays List of used data displays Hierarchical
DataStorageLog Information on data archive set Flat
DataDropOutLog Not Currently used Flat
DisplayDefaults Data display defaults Flat
Desktops User defined Desktops Hierarchical
ExtendedDesktopInfo Additional Desktop information Flat
Envelopes User defined envelopes Flat
ReferenceCurves User defined reference envelopes Flat
EventMarkerLog User created event markers Flat
HardCopyLog <blank> Flat
HardCopyBanners <blank> Flat
LogBehavior Log behavior settings Flat
LoadsSummaryLog User created loads information Flat
TableUpdateBehavior Table update behavior properties Flat
ModalDefinitions User defined mode ranges and titles Flat
ParameterDefaultsState List of parameter default sets Hierarchical
ParameterDefaults List of all user defined parameters Flat
ParametersSavedInDisplays Parameters saved in defined displays Hierarchical
PlannedLoadsTestPoints User defined planned loads test points Flat
PlannedFlutterTestPoints User defined planned flutter points Flat
AlphaNumeric List of Alphanumeric displays Flat
AlphaNumericTable List of AlphaNumericTable displays Flat
Annunciator List of Annunciator displays Flat
FrequencyResponsePlot List of Frequency response displays Flat
DisplayLabel List of Display Label displays Flat
DisplayFolder List of Display Folder displays Flat
CrossPlot List of Cross Plot displays Flat
DisplayTab List of Display Tab displays Flat
FlutterSummaryPlot List of Flutter Summary Plot displays Flat
FrequencyPlot List of Frequency Plot displays Flat
LoadsSummaryPlot List of Loads Summary Plot displays Flat
NyquistPlot List of Nyquist Plot displays Flat
Slider List of Slider displays Flat
Stripchart List of Stripchart displays Flat

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 181

TppDefinitions List of TPP parameters validated Flat
Users List of user defined Users Flat
Lists <blank> Flat
PeaksLog User selected peak values Flat
SystemValues User defined System values Flat
ToolPositions Internal table used for positions Flat
ThresholdLog Calculated thresholds Flat
ViewQueries Internal table of view queries Flat
SelectionsLog User data selections Flat
SystemParameterDefaults List of System Parameter Defaults Flat
ValidationLog Results of TPP parameter validation Flat
DataEditLog List of data edits performed Flat
NullCorrections System calculated Null corrections Flat
FESParameters Parameters used for the FES automation Flat
ActiveXControlsTab ActiveX displays on display builder tab Flat
ActiveXDisplay List of ActiveX displays Flat
DataViewsDisplay List of Data Views displays Flat
DataGroups User defined Data Groups Flat
DerivativeSummaryLog List of pEst calculated derivatives Flat
OctaveBandDisplay List of Octave Band displays Flat
TestPointLog List of completed test points Flat
PlannedTestPoints List of Planned test points Flat
Maneuvers List of pEst required maneuvers Flat
FlightConditions List of pEst required Flight conditions Flat
PredictedResults List of pEst required Predicted Results Flat
CurrentFlightInformation2 Additional Flight information Flat

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 182

APPENDIX B
IADS Data Types Enumerated

IADS Data Types
iadsInteger 0 Integer data type.
iadsDiscrete 1 Discrete data type.
iadsFloatingPoint 2 Floating point data type.
iadsLong 3 Long data type.
iadsUnsignedLong 4 Unsigned long data type.
iadsDouble 5 Double data type.
iadsAscii 6 ASCII data type.
iadsBlob 7 Binary data type
IADS Data Source Type
iadsTpp 1 TPP data source
iadsDerived 2 Derived data source
iadsIap 3 Derived data source.
On/Off enumeration
iadsOn 0 On setting
iadsOff 1 Off setting
Yes/No enumeration
iadsYes 0 Yes setting
iadsNo 1 No setting
Filter algorithms
iadsFilterNone 0 No filter algorithm
iadsButterworthFilter 1 Butterworth filter
iadsEllipticFilter 2 Elliptic filter
Filter pass types
iadsLowPass 1 Low pass filter
iadsHighPass 2 High pass filter
iadsBandPass 3 Band pass filter
Data correction methods
iadsDataCorrectionNone 0 No data correction
iadsDefaultValue 1 Default value
iadsLastValue 2 Last value
Null corrections
iadsNullCorrectionNo 0 No null correction
iadsNullCorrectionYes 1 Use null correction
iadsNullEquationInput 2 Equation input correction
iadsNullEquationResult 3 Equation result correction
Null group enumeration
iadsAircraftGroup 1 Aircraft group
iadsWeaponsGroup 2 Weapons group
Spike detection method
iadsSpikeDetectionMehodNone 0 No spike detection
iadsSlopeChange 1 Slope change detection
iadsAbsoluteChange 2 Absolute change detection
IADS compute types Enum Value Description
iadsAutoSpectrum 0 Auto spectrum compute type
iadsPsd 1 PSD compute type
iadsPhaseMagnitude 2 Phase magnitude compute type
iadsPhaseReal 3 Phase real compute type
iadsPhaseImaginary 4 Phase imaginary compute type

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 183

iadsPhaseGain 5 Phase gain compute type
iadsBode 6 Bode compute type
iadsNyquist 7 Nyquist compute type
IADS Window types Value Description
iadsWindowTypeNone 0 Default window type (none)
iadsHanning 1 Hanning window
iadsHamming 2 Hamming window
iadsBlackman 3 Blackman window
iadsKaiserBessel 4 Kaiser Bessel window
iadsRectangular 5 Rectangular window
iadsFlatTop 6 Flat Top Window
IADS Alpha Value Description
iadsAlphaNone 0 No alpha
iadsAlphaTwoPointZero 1 2.0 alpha
iadsAlphaTwoPointFive 2 2.5 alpha
iadsAlphaThreePointZero 3 3.0 alpha
iadsAlphaThreePointFive 4 3.5 alpha
IADS Averaging Methods
iadsAverageMethodNone 0 No averaging method
iadsAverageTime 1 Time averaging method
iadsAverageFrequency 2 Frequency averaging method
IADS Block Sizes (in bytes)
iadsBlock64 64 64 byte block
iadsBlock128 128 128 byte block
iadsBlock256 256 256 byte block
iadsBlock512 512 512 byte block
iadsBlock1024 1024 1024 byte block
iadsBlock2048 2048 2048 byte block
iadsBlock4096 4096 4096 byte block
iadsBlock8192 8192 8192 byte block
iadsBlock16384 16384 16384 byte block
iadsBlock32768 32768 32768 byte block
iadsBlock65536 65536 65536 byte block

IADS Threshold levels Value Description
iadsNoThreshold 0
iadsWarning 1
iadsAlarm 2

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 184

APPENDIX C
IADS Interface Message Format 1

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 185

IADS Interface Message Format 2

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 186

APPENDIX D
Sample Parameter Definition File
1 TimeUpperWord 1000.0 1 SystemParamType = MajorTime
2 TimeLowerWord 1000.0 1 SystemParamType = MinorTime
3 PARAMETER1 12.330334596 2
4 PARAMETER2 24.6606691919 2
5 PARAMETER3 49.3213383838 2
6 PARAMETER4 98.6426767677 2
7 PARAMETER5 197.285353535 2
8 PARAMETER6 394.570707071 2
9 PARAMETER7 789.141414141 2
10 PARAMETERBLOB 10.0 7 DataSize = 92
100 DECOMSTATUS 789.141414141 1 SystemParamType = DecomStatus

IADS Programming
User Guide

July 2020 Proprietary information of Curtiss Wright © 2020 187

APPENDIX E

IADS 32-bit Decom Status Parameter Format

 31-6 5 4 3 2 1 0
SF(n+1)STAT- SF(n)STAT SF2STAT SF2STAT SF1STAT SF1STAT FSTAT FSTAT

Bits Signal Description___________
0-1 FSTAT Frame Status bits are decoded as follows:

1 0
0 0 Lock
0 1 Check
1 0 Verify
1 1 Search

2-3 SF1STAT Subframe 1 Status Bits are decoded as follows:

 3 2
0 0 Lock
0 1 Check
1 0 Verify
1 1 Search

4-5 SF2STAT Subframe 2 Status Bits are decoded as follows:

 5 4
0 0 Lock
0 1 Check
1 0 Verify
1 1 Search

	1. Programming Resources
	1.1 Overview

	2. Custom ActiveX Display Plugins
	2.1 Creating an IADS custom ActiveX control using C# VS2015
	2.1.1 Adding properties to your new display using C# VS2015
	2.1.2 Debugging your new display in IADS using C# VS2015

	2.2 Creating an IADS custom ActiveX control using C++ VS2015
	2.2.1 Adding properties to your new display using C++ VS2015
	2.2.2 Debugging your new display in IADS using C++ VS2015

	2.3 Adding your new display to IADS
	2.4 IADS demo model control project

	3. Custom Derived Functions
	3.1 Creating a custom derived function using C# VS2015
	3.1.1 Debugging your new function in IADS

	3.2 Creating a custom derived function using C++ VS2015
	3.2.1 Debugging your new function in C++ VS2015
	3.2.2 Deploying your new function in C++ VS2015

	3.3 Accessing your new function in IADS
	3.4 Advanced Topics
	3.4.1 Initialization and execution of your custom function
	3.4.2 Returning multiple results from your custom function

	4. Custom Plugins
	4.1 Creating a custom export plugin using C++ VS2015
	4.1.1 Adding IADS Interface files
	4.1.2 Adding IDataExportPlugin code and your export code
	4.1.3 Make your DLL self-register for use in IADS
	4.1.4 Debugging your new plugin in IADS

	5. Application Programming Interfaces
	5.1 IADS Configuration File API
	5.1.1 Configuration Interface
	5.1.2 Collection Interfaces
	5.1.3 General Purpose Query Interface

	5.2 IADS Data File API

	6. IADS Automation Interfaces
	6.1 IADS Data Export Scripts
	6.2 IADS Data File Reader in Visual Basic

	7. IADS Data Processing
	7.1 IADS Real Time Data Source Interface
	7.1.1 Data Source Specification
	7.1.2 IADS Server Setup
	7.1.3 Testing the data source using IADS Real Time Station
	7.1.4 Troubleshooting

	7.2 IADS Command Interface
	7.2.1 IADS Commander
	7.2.2 The CDS Command Server
	7.2.3 Initialization Commands and Information
	7.2.4 Data Acquisition Commands and Information
	7.2.5 Stopping Data Command and Information
	7.2.6 Time Information
	7.2.7 Archiving Commands and Information
	7.2.8 Nulling Commands and Information
	7.2.9 Data Compression Commands and Information
	7.2.10 Run State Information
	7.2.11 Data Source Information
	7.2.12 System-wide Information
	7.2.13 Startup IADS Command Line Options

	7.3 IADS Server (CDS) Data Throughput Performance Testing
	7.3.1 Overview
	7.3.2 To run the data throughput test

	8. Other
	8.1 Iadsread Matlab Extension
	8.2 Iadsread for Python
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	APPENDIX E

