INDS.

IADS Programming
User Guide

Jul 2020
Curtiss-Wright Document SSD-IADS-140

©2020 Curtiss-Wright
All rights reserved.

CURTISS -
WRIGH'T

CURTISS -
WRIGHT

User Guide

m IADS Programming
®

1.1

2.1
2.1.1
2.1.2
2.2
2.2.1
2.2.2
2.3
2.4

3.1
3.1.1
3.2
3.2.1
3.2.2
3.3
3.4
3.4.1
3.4.2

4.1

4.1.1
4.1.2
4.1.3
4.14

5.1
5.1.1
5.1.2
5.1.3
5.2

6.

6.1
6.2

7.

7.1
7.1.1
7.1.2

July 2020

Table of Contents
Programming ReESOUICESccceeverersnicssnrcssnnncsssnscssssecssssessssssssssesssees 4
OVEFVICW ...ttt et ettt et e et e e e enaee e 4
Custom ActiveX Display PIugins........ccccccevveercccssnnriccssnnnccssssnsscssssnssens 4
Creating an IADS custom ActiveX control using C# VS2015.................. 4
Adding properties to your new display using C# VS2015 12
Debugging your new display in IADS using C# VS2015....................... 15
Creating an IADS custom ActiveX control using C++ VS2015 16
Adding properties to your new display using C++ VS2015.................. 23
Debugging your new display in IADS using C++ VS2015 29
Adding your new display to IADScccccooveevvvieiiiiiiiieeiieeeieen, 32
1IADS demo model control project................ccceeeeccvevceeecianieaiienieeenn. 34
Custom Derived FUuNCtions........eeeecieecsseecssencssneecsssnecsssescsssnecsseccsnns 35
Creating a custom derived function using C# VS2015c..cc........ 35
Debugging your new function in IADSccccccooveveiiviiiiiiiieen. 43
Creating a custom derived function using C++ VS2015....................... 45
Debugging your new function in C++ VS2015ccccccvvvievciannennn. 57
Deploying your new function in C++ VS2015c..ccceevevveviieeninn, 59
Accessing your new function in IADS...............cccocccevvvevieiiianieeeene. 61
AAVANCEA TOPICS ..o 64
Initialization and execution of your custom function............................. 64
Returning multiple results from your custom function 67
Custom Plugins.......cccveeeeivnniiinnnisssnncnsnncssnncssssncssssscssssscssssssssssssssssssnns 73
Creating a custom export plugin using C++ VS2015cccocoeuvenn... 73
Adding TADS Interface filesccoooeiviiiieeiiiiiieieeiieee e 83
Adding IDataExportPlugin code and your export code 88
Make your DLL self-register for use in IADS............c..cc.ccccovvvenrenn.. 90
Debugging your new plugin in IADScccoovvveeviiiiiiieiiieeeieen, 92
Application Programming Interfacescccceeveevreecsuensseecseeccsnecsnnnes 93
IADS Configuration File APL.............cc.cccooooioiiieiiiiiiiiiiieiieee e 93
Configuration INLETfACEcccoeevuieeiiieeiieeeee e 93
Collection INIEITACESccoeeeeeiieeieeieeee e 94
General Purpose Query Interface.................ccoeeveveevieeeciieeeiieeeeean, 103
IADS Data File APccoocceeiuieiiieieieeieeeeeeee e 104
TADS Automation INterfacesccccceeevvuercssneecssneecssnnecssnencssseccssneeens 105
TADS Data EXpOTt SCHIDESevveeaieeeieieeeeee e 105
IADS Data File Reader in Visual Basic................cccccouvueevianenaenanne.. 105
TADS Data Processing........cccoeeecceecssnecssneecsssnecsssnecssseecssssscsssecsssasces 106
IADS Real Time Data Source Interface................ccccceecueeeveneenenanne.. 106
Data Source SpecifiCation.ccc.cceoueeveeieiieeeiiieeeiieeeeieeeeieeeaens 106
TADS Server SEIUP............cocoeiiiiiiiiiieeee e 109

Proprietary information of Curtiss Wright © 2020

CURTISS -
WRIGHT

User Guide

M IADS Programming
®

7.1.3 Testing the data source using IADS Real Time Station....................... 114
7.1.4 TroubleSROOLINGccccuveeeiieeieeeie e 124
7.2 IADS Command INterface..................cccoovcveveueecieniiiiieiieeeee e 125
7.2.1 IADS Commanderccccccouiiaioiiiiaiiiiieiieseee e 126
7.2.2 The CDS Command Serverccccoeueuoiiiianiieiiieiieieaese e 136
7.2.3 Initialization Commands and Information.................c..ccccooevcveecunan... 139
7.2.4 Data Acquisition Commands and Information..................c...ccc.ccuu... 143
7.2.5 Stopping Data Command and Information...................cccccoeecveeuene.. 148
7.2.6 Time INfOrMALIONcccoeeviiieeiiieeiie et 149
7.2.7 Archiving Commands and Information..................c.cccccceeevevcvennnanne.. 150
7.2.8 Nulling Commands and Informationcccoevvveviveecineeinnnanns 153
7.2.9 Data Compression Commands and Information 154
7.2.10 Run State INfOrmMation.................ccoeevvuviemiiieeiiieesiee e 157
7.2.11 Data Source INfOrmMationcccoccceeveeviueeieaniiiieeeeeee e 158
7.2.12 System-wide INfOrMALioNcc..ccccveeviiiiiiiiiaiiieeiiee e 159
7.2.13 Startup IADS Command Line Options.............cc.cccoevvevceiecraneeaenannnn. 162
7.3 IADS Server (CDS) Data Throughput Performance Testing............... 163
7.3.1 OVEFVIEW ..ttt 163
7.3.2 To run the data througRPUL tESTcccvveeeieiieeiieeeiie e, 163
8. 011 1) OO ORI 166
8.1 ladsread Matlab EXtenSion.................ccccccoveiioianoiiiiaiieiieeeee 166
8.2 Ladsread for PYtROMNccooceeeuieiiieieeie et 169
APPENDIX A ..ottt 180
APPENDIX B ..ottt 182
APPENDIX C.....oee ettt ettt 184
APPENDIX Dottt 186
APPENDIX E ..ottt 187

July 2020

Proprietary information of Curtiss Wright © 2020

T TADS #osrgemmns

1. Programming Resources

This guide details methods to programmatically extend IADS by using step by step
examples many of which have working projects with source code that are available for download
from the IADS Web site.

1.1 Overview

IADS provides programmatic extension to the core system using several
techniques. Within the IADS Client, plug-ins can be written using Microsoft COM technology,
including new displays, additions to the derived computational engine and custom data export
extensions. The IADS Client also extends an automation interface for easy scripting. For access
to external data and configuration files IADS provides a set of COM based libraries which can be
linked into your programs. Finally, for data processing, IADS includes a standard Ethernet
protocol for custom real time data interfaces and a command and control interface for real time
operation.

2. Custom ActiveX Display Plugins
For more background on how to build an ActiveX display, download the sample ActiveX

Display project from the Curtiss Wright IADS website and read the comments within the code:
https://iads.symvionics.com/support/programming-examples/

Warning- Be careful about pasting code directly from this tutorial. For instance, Visual
Studio encapsulates strings in different quotation marks (") than the standard quotes in Word.
(“”). You may need to type certain things out manually or edit existing code slightly.

2.1 Creating an IADS custom ActiveX control using C# VS2015

This tutorial assumes you are using Microsoft Visual Studio 2015. It should apply to
other versions with minimal modification. This instruction will guide you through the process of
creating a custom display for IADS using the project wizard in Visual C#.

1) Openup VS2015 and Select File > New > Project.

M Start Page - Microsoft Visual Studio (Administrator)

File Edit View Debug Teamm Tools Test Analyze Window Help

New * @3 Project. Ctrl+Shift+ N
Open P %m Web Site... Shift+ Alt+N
Close %2 Team Project...

&= Repository...

™ File... Ctrl=M

Project From BExsting Code...

July 2020 Proprietary information of Curtiss Wright © 2020 4

https://iads.symvionics.com/support/programming-examples/

T TADS #osrgemmns

2) Inthe New Project dialog that appears, choose the Other Languages > Visual C# tier and
click the Class Library option. At this point, please read the next step before you finish
completing the dialog. There are some important considerations when choosing the proper
project name.

Mtwr Pioispetl ? x
F Recent HET Framework £52 - Soribye Delwht -| B [i= B =
4 Ingtaled - - .
Lari Bpep [Lbarw Wirtdire Vesusl CF Types Wisual 08
L D] enk App ekl Windows sual
a Templates & projest Tor cresteng o TF clos hbeary
= I o
4 Vaual CF E] Windows Forert Appbeation Visual C# al
F Windows
e
Wink J WRF Applcatasn Wisual CF
B CHfuce Siuef et —
Areiresd ﬁ Conscle Sophcation Visual CF
Cloud
Eiterdibaliry gJ AP MET Wb Apehic stion Visyal CF
Le
- s
Lighiertch :_'l Shared Project Visusl CF
Heporting m
Taberlghr __I! Clans Librawy (Poriable for i0%, Andioid gnd Windows) Vesus e
Tee w3
W ot i
X H_II Clugs Ly Wesusl CF
WO e e
b Wriual Biriit L
A Clins Labriety (Pt susl CF
b BaeaScript el S :
Vel ¥ e
hetlight Apphdatien Visual C#
4 Vel Con @' Wevriy i uat €
Windows e
B Sabeerfishe Class Library VewslC® 7
b Onling & here 0o i
Rdprvve B Sharplvsde
Locatican o rogeete =| Brgwie—.
Sodutioen name Ry CSharpDvsplays v Croste dinpctory for pokation
Creabe mabw ot ipoitorny
o Cancel

3) The project name you choose will become part of the display identifier name (also known as
the ProgID, see note below). When it comes time to use your control in IADS, users will
insert your new control into the “Display Builder” toolbox based solely upon its name (more
on this later). Plan on creating many displays in one “project” (most common and easier to
manage the code). Choose a general project name like “AircraftGauges” or
“FluidSystemDisplays”. One way to look at it is that the project name is akin to the “Genus”
of your display, so shoot for generality. Consider prefixing the project name with your
organization like “NASA” or “Lockheed”, as it may easier for users to locate your control the
“Display Builder” list (i.e. NasaFluidSystemDisplays or LockheedAircraftGauges).

Note: Microsoft refers to your display’s name as its “ProgID” (also known as the Program
ID). This is the string equivalent of your GUID (Global Unique Identifier) for the function.
These Ids are placed in the Microsoft registry (directly from your project’s “.rgs” file),
allowing your object to be created without any knowledge of the location of your “DII” on
the file system. Of course, this assumes that it is registered using the “regsvr32” program
(consult the Microsoft documentation).

Now, in the fields at the bottom of the dialog, enter the project name, location, and the
solution name.

July 2020 Proprietary information of Curtiss Wright © 2020 5

R T IADS vesrrogemming

4) After pressing OK, the project will be ready for editing. Before we begin, delete the
Classl.cs file. We will not need the file.

@ -5 fE o L=

- - -
B Seduten "Wl Sharplaples” |1 progent)
4 M Sharplipleys

b Propotes

b @ Refporca

* Opem
pn Wath
L% iew Code FT
L) i Cllane Disgram
Seepe by Thia
M Firs Sobdion Explorer Vies
Eanbade Froan Paggec

X cat X
@ Copy [
M Delate =

O Renses

& Fropetter PR L

fobation Exploeer Tawm Eploser Cliss Ve Bisgasce Weew

5) Right-click on your project in the Solution Explorer and choose Add > New Item.

- ® -5
.f. Seasch Solutson Exploeer (Cbr
m‘:’olmmﬂ k" SharpDeep
gy Budd
Rebauid
Clean
View ¥
Analyoe "
Scope 1o This
@ Hew Sohtien Exploer View
‘0 Mewitern_ Ctrl« Shifts A Add L
q Existing Mem.. Shiftsomen | B Menage NuGet Packages
To Mew Folder LF St StartUp Progect
Ange AP App Client... Debug J
Reference... Insahze e eractive vtk Pregect
£ Cu ke
Service Reference...
% Connected Service— X Remove Dl
Anabyzes [Rename
B Windows Form Unload Progect
T User Control. % Open Folder in File Exploser
41 Ceenpanent_ & Properties Al Eriter
My Claas.

July 2020 Proprietary information of Curtiss Wright © 2020 6

R T IADS vesrrogemming

6) In the “Add New Item” dialog select User Control. Enter the name of your display in the
field and click the Add button.

Bk Bl i - b Shais gDt] W
o Il ot by Delmat - P E - takind Tewmnplates (vl B
Wiaall L0 R = - i i
= ok E\j Clais Vel ¥ Bawva g Vil £F o
- g & rowtbly Wi Firrrr. corliesl
]
o 0 e Erial £ Rrvri
B W
E . "
Wmairan, Fwey Wrsiew Fom el L Berm
W
L]
Porpidton] [~]
L, T
i o ; | e L Wil T Ingive
Craphect]
=g Liee Cantred [9FF) Frinal {0 Brvi
b rderay -
o EEFTE el L8 Barrn
@ ACCUNE T [ty Dacs biocel Wl T4 lopive
ﬂ gl s ol gt ity Pt Wriwal OF Bivva
!;l Appbtatson blandnk i Wrbwad {0 Barra
.
Ei Aalarnbdy dcrmaman e Wrnaal L8 Bara
@ Barrip e Weaeal OF biva
. . -
'
e A St el 44
Al Carel

7) Visual Studio now displays the “Design” view of the display and shows a blank form. You
can use the Visual Studio “Toolbox” to add a visual object. Drop a ProgressBar into the
form; it is located under the “Common Controls™ tier in the Toolbox.

Bl MyCSharpDisplays.cs [Design]® ® X

b All Windows Ferms

4 Comrmon Controls

&k Pointer

B Button

[CheckBox

§= CheckedlistBex
ComboBex
DateTimePicker
Label
LinkLsbel
ListBonx

00
o

T E >

ListView
MaskedTextBox
MonthCalendar
Notifylcon
NumericlpDown

e
1

HEF =

PictureBox

@ RadicButten

8) Now that we are done adding components, we will need to do some work in the code section.
Go to the Solution Explorer and right-click on your “displays.cs” file. Select View Code. In
your “displays.cs” file, add the following using clauses:
using System.Reflection;

July 2020 Proprietary information of Curtiss Wright © 2020 7

CURTISS -
WRIGHT

INDS.

IADS Programming
User Guide

using System.Runtime.InteropServices;
using Microsoft.Win32;

@ B-s5&F@ o F-

5] Sotetion MyCirapOanpley (1 project]
4 [MyCShaspDispl
B Propemes
& ol References
¥ Anahzen
o8 Mcroel Chup
o8 Gystem
8 SystemCon
» Syt Duts
1 Gystem Duta DataetEtensang
.

8 Systeen Net Hitp
oB System Winetows Farms
o8 ystemimi
o8 SystemlimiLing
& Open
Cpen Wik
¥ Wiw Code

iew Designer

F

Wiew Clags Diagiam
Scopets This
[MNew Sohian Egploser View
Euchsde From Fraject
& Cu
M41_ﬂ Cepy
X Delete
Froperties] Ponaene

MyCSharp0ls g prcpertes

LT ETG DN NN Bl My CSharpDisplays.cs [Design)*
2 9] MyCSharpDisplays - || # MyCSF
1 Jusing System;

m.Collections.Generic;

=usl

3 .ComponentModel ;
4 .Drawing;

S .Data;

[.Ling;

7 .Text;

8 using System.Threading.Tasks;
9 using System.Windows.Forms;

using System.Reflection;
12 using System.Runtime.InteropServices;
13 using Microsoft.Win32;

Shilte FT

Code 15
Qa-C 16 Elnamespace MyCSharpDisplays
Del

17 1

AreEnter

9) Now add the following attributes to your class:

[Progld(“MyCSharpDisplays.MyCSharpDisplay”)]
[ClassInterface(ClassInterfaceType.None)]

[ComVisible(true)]

Note that the ProdId attribute is the same “ProgID” as mentioned in step 3. This will become
your display’s name inside of IADS, so choose appropriately. If you have followed the steps

correctly, the name

should be in the form of ProjectName.ClassName.

There are several ClassInterfaceType options. “None” provides the fewest default properties
beyond the ones you explicitly specify.

July 2020

Proprietary information of Curtiss Wright © 2020

CURTISS -

INDS.

IADS Programming

WRIGH'T User Guide
MyCSharpDisplays.cs [Design]® My CSharpDisplays® MyCSharpDisplays.cs® A X
[#] MyCSharpDisplays = ¥z MyCSharpDisplays.My(

7 using System.Text;
8 using System.Threading.Tasks;
9 using System.Windows.Forms;
1a
11 using System.Reflection;
12 using System.Runtime.InteropServices;
13 | using Microsoft.Win32;
14
15
16 Flnamespace MyCSharpDisplays
17 {
18 [FrogId("MyCSharpDisplays.MyCSharpDisplay™)]
19 [ClassInterface{ClassInterfaceType.None)]
28 [ComVisible(true)]|
21
22 Bl public partial class MyCSharpDisplays : UserControl
23 1| ¢
July 2020 Proprietary information of Curtiss Wright © 2020 9

R T IADS vesrrogemming

10) Add the following methods to perform the COM registration functions. COM is the interface
method that IADS will use to send/receive data, save, and load your display. The registration
mechanism is the manner in which IADS will identify your display after it is installed on a
PC. If you skip this step, you will not be able to see your display in the IADS Display
Builder dialog.

[ComRegisterFunctionAttribute]
public static void RegisterFunction(Type t)

{

Microsoft.Win32.Registry.ClassesRoot.CreateSubKey(@"CLSID\{" +
t.GUID.ToString().ToUpper() + @"}Programmable");

Microsoft.Win32.Registry.ClassesRoot.CreateSubKey(@"CLSID\{" +
t.GUID.ToString().ToUpper() + @"}\Control");

}
[ComUnregisterFunctionAttribute]
public static void UnregisterFunction(Type t)

{

Microsoft.Win32.Registry.ClassesRoot.DeleteSubKey(@"CLSID\{" +
t.GUID.ToString().ToUpper() + @"}Programmable");

Microsoft.Win32.Registry.ClassesRoot.DeleteSubKey(@"CLSID\{" +
t.GUID.ToString().ToUpper() + @"}\Control");

M iharpinple.cs [Design]® M Shurplisplays® Wy Sheplnplngia® & X

] bl Sharp Dipdays = | #ig byl SharpDapleys. MyCtharpDispleys =g b
13 U LF 9 5:1'& LES. ROfL L. IRl UpaeY Yiles
using Micresafe.Windd;

— namspace Myltharpbisplays Aa &
{

[g Td("My CiharpDisplays FyCiharpDisplay™)]

[€lassInterface{ClassInterfaceType None))
[Comvisiblefrue)]

pwblic pertial class My

{

[Comftepisterfimctionatiribute]

public static woid ReglsterPunction{Type t}
Microsoft Windl, Reglstry Classesfoot. Createfobey (BT OLSI0V(™ + . GUID. TaSering(). Tolpper() + §~ Prograsssble™);
Microsoft.Wind2.Registry. ClassesRoot. CreateSebley(§-CLSI0N]™ + €. GUID.ToString(). Tolpper() + §° ontrol®);

}

[CosUmregisterfunctionittribute]
public static wold Unregisterfumction(Type t)
{

microsoft.Windd, Aegintry, ClassesAoot, Deletedabley (B CLEIDN]" + €. GUID.Tabtring(). Tolpper(} + §™|Frogramesble™);
Microsoft.Windz.Registry . ClassesRoot.DeleteSubley(§-CLSIDN]™ + €. GUID.ToString(). Tolpper() + @~ }\ontrel®);
i}

public MyCSharpDisplays()

The RegisterFunction is called when the display is registered during the execution of the
RegAsm utility. The UnregisterFunction is called when a display is unregistered. For more
information on registering a display before use, consult the online Microsoft documentation.

July 2020 Proprietary information of Curtiss Wright © 2020 10

R T IADS vesrrogemming

11) Ensure the display is compiled with the necessary COM code so that it can communicate
with IADS. In the “Project” drop down menu, select Properties.

Project Build Debug Team Took Test Ang
1 Add Windows Form...

11 Add User Contrel...

3 Add Component..,

* Add Class..

*@ Add New Data Source...

T Add New ltem.. Ctrl+ Shift= A
‘0 Add Existing ttem... Shifte Alts A

Exclude From Pregect
G Show All Files
Add Reference...
Add Service Reference..,
Zf Add Connected Service...
Add Analyzer...
£ Setms StartUp Project
B Manage NuGet Packages...

€ Refresh Project Toolbex ltems
& MyCSharpDisplays Properties...

12) Under the “Build” tab scroll down to the bottom and check the Register for COM interop

option.
MyCShampbplays = X LESSTTE-IEITEEEY v Sharpd
-
Application Configurntion: -
Ewild Events Platforma tages
[rebsg
Eesources
[Adlcw unsafe code
Serdices
Settings [Optimige code
Reference Paths Errors and wamings
Sl Wgming levek
Code Analysi
Suppress wamangs:

Treat warnings &5 enmors

() Mene

O ap

() Specific wamings:
Cutput

Sutput path:

[2ML documentation file:

4] Register for COM intercp

Gpnerate senalization assembdy:

13) After this step is complete, save your work and continue onto the next section.

July 2020 Proprietary information of Curtiss Wright © 2020 11

T TADS #osrgemmns

2.1.1 Adding properties to your new display using C# VS2015

At this step in the process you will add properties to your display. Think of properties as
“data injection ports” or “interface plugs”. They are attributes of your display, for example, text
color, needle angle, scale factor; any feature you want the user to change or animate. To give a
concrete example, the included demo project is code for an “Attitude Indicator” that simulates an
aircraft dial. It has properties for “Roll”, “Pitch” and “Heading” as well as “Sky Color” and
“Ground Color”.

Any property that you include in your display will be an access point on which the user
can modify its contents/characteristics/behavior. Changing the “Pitch” property in my attitude
indicator example would, as expected, cause the display to rotate its graphics to indicate the new
pitch angle. As so, you need to understand the scope of your display’s behavior and provide your
users every property that you foresee them changing (within reason); and supply the code that
responds to these property values and outputs the appropriate response. When this is complete,
the user can drive any of these properties, with data from IADS, simply by dragging and
dropping a parameter on the display; or they can set any of these properties to a constant value
using the “right-click” properties sheet of the display. The best part is that all you have to do is
worry about what properties to add and how to implement them and IADS will take care of ALL
of the data related issues.

1) Add a public interface to the class. This is the interface which we will put all our properties
that we want to expose to the user. In this example, we have added the Value property to
provide access to the Value property of the .Net ProgressBar control.

public interface IProgressBar
{

int Value {set; get;}
}

My CSharpDisplays.cs [Design] My CSharpDisplays™
[2#] My CSharpDisplays = *0 |ProgressBar

16

11 using System.Reflection;

12 using System.Runtime.InteropServices;

13 using Microsoft.Win32;

- bublic interface IProgressBar

15

16 {

17 int Value { set; get; }
18)]

July 2020 Proprietary information of Curtiss Wright © 2020 12

CURTISS -
WRIGHT

IADS Programming
® User Guide

2) Add the interface to the User Control class:
public class MyCSharpDisplay : Usercontrol, IProgressBar

MyCSharpDisplays.cs [Design]® MyCSharpDisplays MyCSharpDisplays.cs™ ® X
[€#] MyCSharpDisplays - | *13 MyCSharpDisplays.MyCSharpDisplays
28
21 —namespace MyCSharpDisplays
22 Iy
23 [Progld("MyCSharpDisplays.MyCSharpDisplay™}]
24 [ClassInterface(ClassInterfaceType.None)]
25 [Comvisible(true})]
26
27 - public partial class MyCSharpDisplays : UserControl, [IPROBressBan
28 {

3) The next step is to implement the created code for each new property we add. In this
example, we will focus on the set and get functions for the “Value” property.

4) For the set function, we will need to capture the incoming value and push it into the progress
bar object. Once that is complete, our progress bar should redraw and display the new value.
Please be aware that the value from the outside might be pushed on this display at a very high

frequency. It might be prudent to add code to determine if the incoming property value is

different than the existing value of a property and forgo the setting on the progress bar. This
is vital optimization you might need to consider when building more complex displays. For

this simple example, we will skip this step. The get function is easy to implement. Simply

return the value of our progress bar that we have created for this property.

MyCSharpDisplays.cs [Design]® MyCSharpDisplays™ Wy CSharpDisplays.cs® A X
[#] Wy CSharpDisplays = *iz MyCSharpDisplays.M
Bl - public static vold Registertunctionilype t)
31 {
32 Microsoft.Win32.Registry.{lassesRoot.CreateSubKey|
33 Microsoft.Win32.Registry.{lassesRoot.CreateSubKey|
34 T
35 [ComUnregisterFunctionAttribute]
36 = public static woid UnregisterFunction(Type t)
37 {
38 Microsoft.Win32.Registry.ClassesRoot.DeleteSubkey|
39 Microsoft.Win32.Registry.ClassesRoot.DeleteSubkey|
40 }
41 = | public int Value
42 {
43 = get
44 {
45 return progressBarl.Value;
46 1
47 = set
48 i
42 progressBarl.Value = value;
5@ 1
51 3
July 2020 Proprietary information of Curtiss Wright © 2020

13

R T IADS vesrrogemming

public int Value
{

get
{

return progressBarl.Value;

progressBarl.Value = value;

}

5) At this point you can modify the code in the display to perform your specific needs.
6) See section 2.3 to add your new display to IADS.

July 2020 Proprietary information of Curtiss Wright © 2020 14

CURTISS -

INDS.

WRIGHT

IADS Programming
User Guide

2.1.2 Debugging your new display in IADS using C# VS2015

1) In the development environment, place a break point in one of the “Set” method for testing.

45 1
47 = set
A8 {
°* =
58
51 1
52
53
54 = public MyCSharpDisplays()

In Visual Studio, select the Project > Properties drop down menu. In the “Debug” tab, set
the “Start external program” field to the IADS application executable (Iads.exe). The exe is
located in the “C:\Program Files\lads” directory. Build your project and click the “Go”

command [ADS will start.

MyCSharpDisplays.cs [Design]

(SO BT AR Sl [y C SharpDisplays.cs

Application]) : :
Configuration: | Active (Debug) w Platform: | Active (Any CPU)
Build
Build Events Start Action
Debug™
O star proec
Resources
(®) Start external prograrm: | C\Program Files\IADS\ClientWorkstation\lads.exe
Services
Settings () Start browser with URL:
Reference Paths Start Options
Signing .
Command line arguments: | /|gcal
Code Analysis

Working directony:

[] Use remote machine

2) Drag-n-drop your display onto the new Analysis Window as explained in section 2.3. Once
that is complete, save your configuration. Choose a parameter from the Parameter Tool and
drop it onto the display. After the parameter is attached to a property, your break point should

now hit in the debugger. You can now step through your drawing code if necessary.

July 2020 Proprietary information of Curtiss Wright © 2020

15

cURTI==" TADS vosrogenmn

2.2 Creating an IADS custom ActiveX control using C++ VS2015

This tutorial assumes you are using Microsoft Visual Studio 2015. It should apply to
other versions with minimal modification. This instruction will guide you through the process of
creating a custom display for IADS using the ATL COM Wizard in C++ VS2015.

Warning- Make sure to create a project with the same bitness (x64,x86) as your IADS
client. Your interfaces will not work if they try and run on a different architecture.

1) Openup VS2015 and Select File > New > Project.

m Start Page - Microsoft Visual Studio (Administrator)
File Edit View Debug Team Tools Test Analyze Window Help

Mew P {3 Project. Ctrl+Shift+ N
Cpen P ¥%m o Web Site... Shift+Alt+h
Close % Team Project...

e 0 =

2) In the New Project dialog that appears, choose the Visual C++ > ATL tier and click the
ATL Project option. At this point, please read the next step before you finish completing the
dialog. There are some important considerations when choosing the proper project name.

Mew Project ? X
I+ Recent MET Framework 452 = Sort by: Default »| iF Search Installed Templates (Ctrl+E) P~
Installed |‘!:|+ ATL Project Visual C++ Type: Visual C++
Android - A project that uses the Active Template
Cloud Library
Extensibility
i05
LightSwitch
Reporting
Sitverlight
Test
WCF
Workflow
I+ Visual Basic
b JavaScript
Visual F#
4 Visual C++
b Windows
ATL
CLR
General
MFC
Test
Win3? -
b Online Click here to go online and find templates.
Name: |MyActi\reXCOntmI| |
Location: c\Projects -
Solution name: MyActiveXControl Create directory for solution
[[] Create new Git repository

3) The project name you choose will become part of the display identifier name (aka ProgID,
see note below). When it comes time to use your control in IADS, users will insert your new

July 2020 Proprietary information of Curtiss Wright © 2020 16

T TADS #osrgemmns

control into the “Display Builder” toolbox based solely upon its name (more on this later).
Plan on creating many displays in one “project” (most common and easier to manage the
code). Choose a general project name like “AircraftGauges” or “FluidSystemDisplays”. One
way to look at it is that the project name is akin to the “Genus” of your display, so shoot for
generality. Consider prefixing the project name with your organization like “NASA” or
“Lockheed”, as it may easier for users to locate your control the “Display Builder” list (i.e.
NasaFluidSystemDisplays or LockheedAircraftGauges).

Note: Microsoft refers to your function’s name as its “ProgID” (aka Program ID). This is the
string equivalent of your GUID (Global Unique Identifier) for the function. These Ids are
placed in the Microsoft registry (directly from your project’s “.rgs” file), allowing your
object to be created without any knowledge of the location of your “DII” on the file system.
Of course, this assumes that it is registered using the “regsvr32” program (consult the
Microsoft documentation).

Now, in the fields at the bottom of the dialog, enter the project name, location, and the
solution name.

4) After pressing OK, the “ATL Project Wizard” dialog will appear as below.

ATL Project Wizard - MyActiveXControl ? *
Welcome to the ATL Project Wizard

i These are the current project settings:

Application Settings ® Dynamic-Link Library
Click Finish from any window to accept the current settings.

After you create the project, see the project's readme. txt file for information about the project
features and files that are generated.

Next = | | Finish | | Cancel

July 2020 Proprietary information of Curtiss Wright © 2020 17

R T IADS vesrrogemming

5) Click the Next button in the Wizard. On the new wizard page, ensure that the “Dynamic Link
Library (DLL)” is checked. Every display that runs in IADS is of

ATL Project Wizard - MydctiveXControl ? =
E Apphcation Settings
e pplcation bype: Support options:
®) Dymamic-ink lbrary {DLL) Al e gang aif proocy fatub code
SRR St Extcitatle (DF) [supportiarc

Gervice (EXE) [Suppert COM+ L0

[:‘-t-ﬂ:l'llrwmufmﬂ 50L)
cheds

File bype handler options:
File extenson:

[< Previsss | [pwh][cowa

type DLL because it allows for maximum speed in displaying graphics. Press the Finish
button and the Wizard will set up your project.

6) Next, go to the “ClassView” tab in Visual Studio’s workspace and right-click on the project
name. Choose Add > Class.

July 2020 Proprietary information of Curtiss Wright © 2020 18

CURTISS -
WRIGHT

INDS.

IADS Programming
User Guide

i Build

Rebuild

Clean

View

Analyge

Prageet Only
Retaeget SO Viriesn

Propect Dependencie—.
Pregect Bujkd Order...
Busld Cumtemustsad..

Add

L

Class Wigard...
Add Beferemce .
Aad Connected Serace._

St as Stgrellp Project
Digbaig
Sovi MypArtnedContral

~E @54

St Alphabetically
St By Object Type
St By Olbyesct Acegss
Giyp By Otgect Type
F Propeies

Predile Guided Optirezation ¥

Manage [uGet Packages...

. o3 -
< Searche = p

Ri—

ChrlShilt=X My Becource..

Crlet

Eaploster Class Veew Retource View

Alt= Ervter ~ax

7) Upon adding a new class you will be presented with a dialog. Click the ATL tier and ATL
Control as shown below. When that is complete, press the Add button.

Add Clam - Wy St onfeol
& Iritalied

4 eiusl Con
ELR
ATL
Cre
ML

O

[

Sent b Dl - iF =
!.I ATL Sevgle Obect Vi €55 Type: Vil Cos
g ATL Cartecd Vil € canned
ii ATL OLEDE Congurnes Wbl Con
I'"-' AT, Ceal Wil
B ATLCiskeg e
;.:—_ Add ETL Suppert To W Vil o=
: ATL Pr ¥ Wil Con
F operty Fage w
i ATL CLIDE Pacsidar Vinud Ce e
@ KTL Bt Sarons Page Companant Vil C-=
Eﬂ ATL COM = 10 Componert Weiasdl Co e

A 1 Rnecy Templang Ly Aot

8) On the first tab, enter the name of your display in the “Short Name” field. The wizard will fill
out the rest of the tab automatically. For this example, I used “DisplayName” as the short
name. The name entered will be combined with your project name and will present the final
display name inside of IADS (ProjectName.FunctionName) as explained on page 1. See the

July 2020

Proprietary information of Curtiss Wright © 2020

19

R T IADS vesrrogemming

“ProgID” field in your dialog for your final IADS display name. Warning: Newer Visual
Studio versions do not automatically populate the ProgID field. Please ensure the ProgID
field contains your specific ProjectName.FunctionName text. If not, please type in the
appropriate text manually. Press “Next” to continue.

ATL Contral Wizard - MyActreXControl T x
/ : Welcome to the ATL Control Wizard
— C++
a ::: Short name: h fig:
Dol |pesplaytinme | Crsplaytiame. h
Inberfaces
Appearance Chz: =P fie:
Stock Properties iR I Lo e
CoM
Coclass: Type:
|Desplaytlane] Cespiaytiame Class
Interface: ProgiD:
[iDesplaytiame [Pevactvexcontrol Displaytiamel — x
Maxt > Finich Carcel

9) On the next tab (“Options”), leave everything as default (Standard control, Apartment, Dual,
Yes, and no other options checked). This will allow you to take full control of a “blank
canvas” and draw your display using low level graphics libraries such as GDI/GDI+ or
OpenGL. On the other hand, if you need to create a “dialog based” display containing typical
dialog elements such as text boxes, drop down lists, etc you will need to select the
“Composite control” choice.

July 2020 Proprietary information of Curtiss Wright © 2020 20

CURTISS -
WRIGHT

IADS Programming
User Guide

c:;

ATL Control Wizard - MyActiveXControl

Options
Names Control type: Intiarface:
— (®) Standard contral @© Dual
pHens ~ () Custom

Interfaces IZ_:_:- Compogite control b A=

() DHTML control
Appearance -
Stock Properties [Minimal control Support:

["] connection points
Aggregahnn: [Licensed

(@) Yes

(O No

() Only

Click here for unsupparted Smart Device Options

|<Previnus || MNext = || Finish || Cancel |

The remaining options are basically “COM speak”. If want understand these options fully,
you will have to consult the Microsoft documentation. The most notable remaining option is
“Interface”. In order to create a real compliant ActiveX “display”, you must choose “Dual”
interface. This will enable IADS (and other programs) to interface to your control using the
“IDispatch” interface, which allows a loosely coupled, “on the fly” communication. This also
happens to be the primary (simplistic) way that IADS gets data to your control. More on this
subject later.

10) On the next tab (“Interfaces™), leave all of the default choices and select “Next”. Again, these

options are more “COM speak” and include standard interfaces in which the Wizard will
implement for you automatically. If you want more background information, consult the
Microsoft documentation.

11) On the next tab (“Appearance”), select the “Windowed Only” checkbox if you plan on using

July 2020

OpenGL; otherwise uncheck it. “Windowed Only” will ensure that we have a window to
create an OpenGL context upon. For GDI based displays, we want to attempt to draw
“without a window” for speed and resource considerations. Leave the other settings as
default (later discuss the speed benefits of de-selecting the “Normalize DC” checkbox).
Remember, OpenGL = “Windowed Only”. Don’t worry, this can be easily changed later if
you make a mistake (as can almost anything).

Proprietary information of Curtiss Wright © 2020 21

cURTI==" TADS vosrogenmn

ATL Control Wizard - MyActiveXControl 7 x
¢ i: Appearance
ATL
Mames View status: Other:
Options Opaque Normalized DC
Interfaces Solid background [] windowed only
Appearance Add control based on: [insertable
Stock Properties | (none) A |

Miscellaneous status:
[] tnyisible at run time
[Acts like button
[Acts like label

Click here for unsupported Smart Device Options

| < Previous || Next = || Finish || Cancel |

12) On the next tab (“Stock Properties”), leave all the options empty and select “Next”. These
options are display properties that the Wizard will implement for you automatically.
Generally, each property will be added after Wizard is complete. If you want more
background information, consult the Microsoft documentation.

After clicking “Finish”, the Wizard will auto-create most of the code needed for your new

display. Examine your “Solution Explorer” view. It should now contain the new display
object by name.

July 2020 Proprietary information of Curtiss Wright © 2020 22

T TADS #osrgemmns

2.2.1 Adding properties to your new display using C++ VS2015

At this step in the process you will add properties to your display. Think of properties as
“data injection ports” or “interface plugs”. They are attributes of your display, for example, text
color, needle angle, scale factor; any feature you want the user to change or animate. To give a
concrete example, the included demo project is code for an “Attitude Indicator” that simulates an
aircraft dial. It has properties for “Roll”, “Pitch” and “Heading” as well as “Sky Color” and
“Ground Color”.

Any property that you include in your display will be an access point on which the user
can modify its contents/characteristics/behavior. Changing the “Pitch” property in my attitude
indicator example would, as expected, cause the display to rotate its graphics to indicate the new
pitch angle. As so, you need to understand the scope of your display’s behavior and provide your
users every property that you foresee them changing (within reason); and supply the code that
responds to these property values and outputs the appropriate response. When this is complete,
the user can drive any of these properties, with data from IADS, simply by dragging and
dropping a parameter on the display; or they can set any of these properties to a constant value
using the “right-click” properties sheet of the display. The best part is that all you have to do is
worry about what properties to add and how to implement them and IADS will take care of ALL
of the data related issues.

1) Now, make sure that you are in the “ClassView” tab of the VS2015 workspace. To add a
“Property” to your new control, Right-click on the “XXXXX” where “XXXXX” is the name
of your newly created display (look for the little “magnifying glass” icon). Select “Add
Property” from the popup menu.

July 2020 Proprietary information of Curtiss Wright © 2020 23

R T IADS vesrrogemming

<Search> - R

3

4 [MyActiveXControl
- b o= Maps
L] @ Global Functions and Vanables
v Macros and Constants
' b *z CDisplayName
b *3 CMyActiveXControlModule

dows Mobile platfors

-]
#*2 View Class Diagram ptrollib
% GoToDefinition Fi2 pes
*N Go To Declaration Ctrl+F12
*a Browse Definition
Find All References Shift+F12
Filter To Type
Add P ') Add Method...
g Class Wizard... Ctrl+ Shift+X *& Add Property...
O} Copy Ctrl+C
O Rensme.. Ctd+R, Ctri+R
¥ Sort Alphabetically
Sort By Object Type
Sort By Object Access
Group By Object Type
& Properties Alt=Enter

Solution Explorer Team Explorer Class View | Resource View

July 2020 Proprietary information of Curtiss Wright © 2020 24

R T IADS vesrrogemming

2) Inthe Add Property Wizard, set the property type to the desired data type (double in this
example) and the name of the property (Roll in this example) and click Next.

Add Property Wizard - MyActiveXControl ? bt

ﬁ Welcome to the Add Property Wizard

Property type: Property name:
Names

DOUBLE ~| [Roll

IDL Attributes

Function type:

Get function Put function

(® PropPut () PropPutRef

Parameter type: FParameter name:

[Jin ~

| Mext = || Finish || Cancel |

3) In the last page of the Add Property Wizard, leave all the options as default except the
helpstring field. This helpstring will be displayed in the IADS properties sheet when the user
is setting the property, try to provide a descriptive (but short) sentence for your new property.

Add Property Wizard - MyActiveXControl ? X
ﬁ IDL Attributes
Names id: helpcontext:
IDL Attributes | ! | |
helpstring:
|Ro|l angle of the horizon X|
[] bindable [requestedit
[source
[hidden
[restricted
[defaultcollelem [local
[] nonbrowsable
Finish | | Cancel

July 2020 Proprietary information of Curtiss Wright © 2020 25

T TADS #osrgemmns

4) When you are complete, press the “Finish” button. This will auto-create code to implement a
property named “Roll” within your new project. Repeat this process (starting from step 1) for
every property that you want to add to the display.

5) Going back to your “Solution Explorer”, you will see the new property code inserted into
your display’s .cpp file.

6) The next step is to implement the code created for each new property we added with the Add
Property Wizard. Thus, in our example property “Roll”, we will need to focus in on the
put Roll and get Roll functions. In preparation, we will need to add a class member variable
for each new property. For the Roll property, add a new class member variable to the .h
display class named “mRoll” with the same data type as the property (double in this
example). Do not forget to set this new member variable mRoll to 0.0 in the “FinalConstruct
function which is also part of the .h class.

2

7) For the put_Roll function, we will need to capture the incoming value and store it in a class
member variable. Once that is complete, we will call a function named “FireViewChange”
that will let our display know it needs to be redrawn. When the redraw function (OnDraw) is
called, we will then use the value contained in the class member variable to draw the display.
In addition, we will set a variable called m_bRequiresSave to TRUE, telling IADS that we
wish to save our display. This is a vital step to ensure your display is saved within [ADS
when a property is changed. Notice that we only perform this code if the incoming property
value is different than the existing value of the property. The get Roll function is easy to
implement. Simply return the value of our class member variable that we have created for
this property.

8) Now, when all of your properties are implemented, add your “drawing code” to the
“OnDraw” function. The OnDraw function is where you will take all the values of your class
member variables and actually draw the display content. See the sample projects for
examples in both GDI and OpenGL.

July 2020 Proprietary information of Curtiss Wright © 2020 26

R T IADS vesrrogemming

DisplayMame.cpp DisplayMame.h* + X
(%l MyActiveXControl = ¥ CDisplayName L
187
188 // IDisplayName
1@9 public:
118 = HRESULT OnDraw(ATL_DRAWINFO& di}
111 {
112 RECT& rc = *(RECT*)di.prcBounds;
113 // Set Clip region to the rectangle specified by di.prcBounds
114 HRGN hRgnOld = MNULL;
115 if (GetClipRgn(di.hdcDraw, hRgn0Old) !'= 1)
116 hRgn0ld = NULL;
117 bool bselect0ldRgn = false;
118
119 HRGN hRgnNew = CreateRectRgn(rc.left, rc.top, rc.right, rc.bottom);
128
121 = if (hRgnMNew !'= NULL)
122 {
123 bselect0ldRgn = (SelectClipRgn(di.hdcDraw, hRgnMew) != ERROR);
124 | }
125
126 Rectangle(di.hdcDraw, rc.left, rc.top, rc.right, rc.bottom);
127 SetTextAlign(di.hdeDraw, TA CENTER|TA_BASELINE);
128 LPCTSTR pszText = _T("DisplayName™);
129 EH#ifndef WIN32 WCE
138 TextOut(di.hdcDraw,
131 (re.left + rc.right) / 2,
132 (rec.top + rc.bottom) / 2,

Ensuring your display is saved in IADS

1) Go to your “.h” file (SampleDisplay.h in this example) and insert the code “public
[PersistPropertyBagImpl<CYourClassName>" as below. This will allow the control to
“save” in IADS properly. Don’t forget to add a “comma” to the end of the line above this

new line.
DisplayMameh* & > IEEETER BT
[l MyActiveXControl = #z CDisplayMame -
13
14
15 // CDisplayName
16 Flclass ATL_NO_VTABLE CDisplayName :
17 public CComObjectRootEx<CComSingleThreadModels,
18 public IDispatchImpl<IDisplayMame, &IID IDisplayName, ELIBID MyActiveXControllLib, /*w¥
19 public I0leControlImpl<CDisplayNames,
28 public I0leCbjectImpl<CDisplayMNames,
21 public I0leInPlaceActiveObjectImpl<CDisplayName>,
22 public IViewObjectExImpl<CDisplayName:,
23 public I0leInPlaceObjectWindowlessImpl<CDisplayName>,
24 public ISupportErrorInfao,
25 public IQuickActivateImpl<CDisplayName>,
26 E#ifndef _WIN32_WCE
27 | public IDataObjectImpl<CDisplayName>,
28 #endif
29 public IProvideClassInfo2Impl<&CLSID_DisplayName, NULL, &LIBID MyActiveXControllib:,
3@ public CComCoClass<CDisplayMame, &CLSID DisplayMName>,
31 public CCcn'Ccnt’cl([Displa}'Han'e)L
32 public IPersistPropertyBagImpl<CDisplayName>
33 {
34 public:
35
36

July 2020 Proprietary information of Curtiss Wright © 2020 27

R T IADS vesrrogemming

2) Likewise, you need to add “COM_INTERFACE ENTRY (IPersistPropertyBag)” to the
“Com Map” in the “BEGIN_COM_MAP” area of the code as below. This is also needed to
allow the control to “save” in IADS.

I NETATN IR DisplayMame.cpp

1

[MyActiveXControl - *3 CDisplayMame - -
49 e
58 -
51 EIBEGIN_COM_MAP(CDisplayName)

52 COM_INTERFACE_ENTRY(IDisplayName)

53 COM_INTERFACE_ENTRY(

54 COM_INTERFACE ENTRY(

55 COM_INTERFACE_ENTRY(t

56 COM_INTERFACE_ENTRY(ject)

57 COM_INTERFACE_ENTRY(IOleInPlaceObjectWindowless)
58 COM_INTERFACE ENTRY{I0] bject)

59 COM_INTERFACE_ENTRY2(IOleWindow, IOleInPlaceObjectWindowless)
68 COM_INTERFACE_ENTRY({IOleInPlaceActiveObject)

51 COM_INTERFACE_ENTRY(IOleControl)

62 COM_INTERFACE ENTRY{IOleObject) 1
63 COM_INTERFACE_ENTRY({ISupportErrorInfo)

B4 COM_INTERFACE_ENTRY(IQuickActivate)

55 E#ifndef _WIN32_WCE

66 COM_INTERFACE_ENTRY(IDataObject)

67 #endif

68 COM_INTERFACE_ENTRY(IProvideClassInfo)

59 COM_INTERFACE_ENTRY(IProvideClassInfo2)

7e fOM_INTERFACE_ENTRY{IPersistPropertyBag)

71 END_COM_MAP()

72

73 EIBEGIN_PROP_MAP{CDisplayName)

3) For every property to “save”, add it to the “BEGIN_PROP_MAP” area of the code as below.
The number corresponds to the property id that is defined by the wizard in the “.idl” file of
the project. Examine your “.idl” file from the “Solution Explorer” tab of the workspace for
the correct number. Properties in your “PROP_MAP” will get saved by IADS and reloaded
when the display is created in a saved Analysis Window.

DisplayName.cpp
[l MyActiveXControl - % CDisplayMame
71 END_COM_MAP({)
72
73 —|BEGIN_PROP_MAP(CDisplayName)
74 PROP_DATA_ENTRY(" cx™, m_sizeExtent.cx, WT_UI4)
75 PROP_DATA_ENTRY(" cy", m_sizeExtent.cy, VT_UI4)
76 // Example entries
77 PROP_ENTRY TYPE("Roll", 1, CLSID NULL)
78 = // PROP_ENTRY TYPE("Property Name", dispid, clsid, vtType)
79 // PROP_PAGE(CLSID StockColorPage)
e END_PROP_MAP({)
81
a2
83 —|BEGIN_M5G_MAP (CDisplayName)

4) At this point, you can begin modifying the code in the display to perform your specific needs.
5) See section 2.3 to add your new display to IADS.

July 2020 Proprietary information of Curtiss Wright © 2020 28

R T IADS vesrrogemming

2.2.2 Debugging your new display in IADS using C++ VS2015

1) Place a break point in your “OnDraw” method for testing.

DisplayMame.h™ -+ > = EEET IRl

] MyActiveXControl - ¥ CDisplayMame
106 1
187
1a8 !/ IWiewDbjectEx
189 DECLARE_VIEW STATUS(VIEWSTATUS_SOLIDBKGND | VIEWSTATUS OPAQUE)
11e
111 // IDisplayName
112 public:
113 = HRESULT OnDraw(ATL DRAWINFO& di)
114 I
® 115 | RECT& rc = *(RECT*)di.prcBounds;
116 // set Clip region to the rectangle specified by di.prcBounds
117 HRGN hRgn0ld = NULL;
118 if (G@etClipRgn(di.hdcDraw, hRgn0ld) != 1)

2) In Visual Studio, select the Project > Properties drop down menu. Under the “Configuration
Properties > Debugging” tier, pick “lads.exe” as your “Command”. The lads.exe is located in
your “C:\Program Files\Iads” directory. Build your project and click on the “Go” command.

IADS will start.
MyActiveXControl Property Pages ? X
Configuration: | Active(Debug) ~ Platform: | x84 ~ Configuration Manager...
4 Configuration Properties Debugger to launch:
Censal Local Windows Debugger ~
Debugging
pae I ¥ rogram Files\ADS\ChientWorkstation\ads exe v
JC++
. Command Arguments flocal
I- Linker Workin Di P o
I Manifest Tool orking Directory (ProjectDir)
Attach Ne
I Resources
I MIDL Debugger Type Auto
I XML Document Generator Environment
I> Browse Information Merge Environment Yes
I> Build Events SOL Debugging No
I> Custom Build Step Amp Default Accelerator WARP software accelerator
I Code Analysis
Command
The debug command to execute.
£ >
Cancel | [Auoly

3) Drag-n-Drop your display to the new Analysis Window as in section. Your break point
should now hit in the debugger. You can now step through your rendering code if necessary.

July 2020 Proprietary information of Curtiss Wright © 2020 29

cURTI==" TADS vosrogenmn

Deploying your new display in IADS

When it comes time to deploy your new control to users on other PCs, you need to
consider a couple of issues. One issue is that your control may require some auxiliary dlls that
are not available on the other systems. If that occurs and the dlls are missing, the control may not
operate. To help minimize this possibility, you must always build your new control dll in
“Release” mode. You should never distribute a control dll that has been compiled under the
“Debug” mode. The debug mode uses libraries that will most certainly be missing on any
machine without Visual Studio installed. Beyond that, it is always best to ‘statically link”’ all the
runtime libraries. Also, since we’ve used ATL to build this display, we will need to statically
link the ATL library as well.

1) In Visual Studio, select the “Project->Properties” drop down menu. Make sure that the
“Configuration” dropdown is set to “Release”. Under the “Configuration Properties > C/C++
> Code Generation” tier, set the “Runtime Library” to “Multi-threaded (/MT)”.

MyActiveXControl Property Pages ? X
Configuration: | Active(Debug) ~ Platform: | x64 ~ Configuration Manager...
4 Configuration Properties Enable String Pocling
General Enable Minimal Rebuild es (/Gm)
Debugging Enable C++ Exceptions Yes (/EHsc)
VC++ Directories Smaller Type Check Mo
4 C/Ces Basic Runtime Checks Both (/RTC1, equiv. to /RTCsu) (/RTC1)
el Runtime Library Multi-threaded (/MT) v
Optimization Struct Member Alignment Default
LispmeEson - Security Check Enable Security Check (/G5)
Code Generation
L Control Flow Guard
anguag? Enable Function-Level Linking
Precompiled Headers ki
Enable Parallel Code Generation
Output Files -
- Enable Enhanced Instruction Set Mot Set
Browse Information
e Floating Point Model Precise (/fp:precise)
All Options Enable Floating Point Exceptions
Command Line Create Hotpatchable Image
I Linker
I Manifest Tool
I Resources
I MIDL
I+ XML Document Generator
I Browse Information
I> Build Events
I Custom Build Step Runtime Library
I Code Analysis Specify runtime library for linking. (/MT, /MTd, /MD, /MDd})
£ >

Cancel Apply

July 2020 Proprietary information of Curtiss Wright © 2020 30

T TADS #osrgemmns

2) Once you have made these changes to your project, you should rebuild your ‘solution’. Make
sure once again that your current configuration is set to “Release” and then select the Build >
Rebuild Solution drop down menu option. After this step is complete, your control dll
should be in your project “Release” folder. It should now be ready to deploy on another
system.

The control dll will need to be copied to the other PC and ‘registered’. In order to register the
dll, you will have to run the ‘regsvr32.exe’ program. One easy way to accomplish this is to
double click on the dll in Windows Explorer. When asked what program to execute on the
dll, navigate to the Windows\System32 directory and choose the regsvr32.exe file. This
procedure may be different if the operating system is a 64 version. Please consult the online
documentation for specifics.

If the dll fails to register at this point, we’ve most likely failed to statically link the needed
dlls. We can investigate which dlls are missing by using the “Dependency Walker” tool. The
Dependency Walker program is located within the Microsoft Visual Studio\Common\Tools
directory and is named “Depends.exe”. Copy Depends.exe from your development PC to the
target PC and run the program. From the File drop down menu select Open and choose your
control dll. Examine the module list in the bottom window pane. Any missing dependent dlls
should show up with a question mark. Search for those dll names on the net and find out their
purpose. It might help you narrow down what solution setting you have missed. It is also
possible that the missing dll is a private library that you are using, in which case you will
need to either static link or copy that dll to the target machine as well.

July 2020 Proprietary information of Curtiss Wright © 2020 31

R T IADS vesrrogemming

2.3 Adding your new display to IADS
1) Click the Display Builder button in the bottom right corner of the IADS Dashboard.

AircraftGauges [ParameterTool “| ChangeDesktop Performance
Concat (o Global Time Message Log Save Config Log Off
ExampleAxOGLControl (<] IADS Lags Configuration HideDashboard Help

The “Display Builder” dialog will appear with icons of components that you can use to build
your displays (including your new ActiveX control).

2) Click on the Analysis Window icon (upper left) and hold down the left mouse button to drag
it onto your Desktop.

Display Builder (=] (=S|

Data Displays lActiveK Cﬂ-ntrols] Alignmentl

Panel Faolder

.
q Y hd
S| A | 4| o) =
a

KD

et o

NA0EABGAE
e[Fle]ela[r[¥

[ARR0ARA
NAGRGAGOEAH
[<]

a

_ﬁ|
|E

o

m
i

L[] *F
==

"
L
Nl

3) Now let’s add your new control to the “Display Builder”. Click on the second tab in the
display builder named “ActiveX Controls”. This is where all ActiveX displays will reside,
ready to be dropped upon your newly created Analysis Window. Notice that there are only a
select few ActiveX control icons on this tab of the display builder. If the display builder were
to show all of the controls available on your system, the icons would fill several pages of this
size. In order to add your new control, you must “Right-click” on tab (somewhere where
there are no icons). This will activate yet another dialog containing both the “IADS” supplied
ActiveX controls as well an entire list of all the ActiveX controls on your system (including
your newly created one!). Click on the All Controls tab of this new dialog and find your new
control. The name will be ProjectName.ObjectName” as discussed earlier in this tutorial.
Click OK to add your display to the display builder. This only needs to be done once for
each new control that you wish to debug/add in IADS.

July 2020 Proprietary information of Curtiss Wright © 2020 32

CURTISS -

WRIGHT

INDS.

IADS Programming
User Guide

Display Builder (=] -

Data Displays ActiveX Controls |Alignment|

=EE@cE™

BEOE=8=

Right Click for more Controls

Note: If you cannot locate you display in the “All Controls™ list, try checking your “.rgs” file

in your VS2015 project in the “workspace” file view. It contains an entry named

VersionIndependentProgID. This is where VS2015 stores your “Progld” (Program ID) for

the project.

Components

(-]

IADS Controls | All Controls |

D MSWless, WLFrame
O mswiLess. WiHScral

O mswiLess, WLCOption

O mswiess, wiText

[mswiLess. wiLyScrall

O mwsamp. MwsampCeel. 1

O twesamp. MwsampCrrl.2

[myasctivesControl, DialogBasedDisplay
|1 | Mty ActiveXContral, Displayhiame
D NEQTERISSETUP MeoterisSetupCtrl, 1
[wetmeeting. App

1| m | 3

[mswiLess., wiList |E|

B 1o
Eme
W © [
@ =

[Show Checked Only

Uncheck Al

Browse, ..

Location: C\MyActive X ControlDire ctory'MyActive XControl'\Debug

0K Cancel

July 2020 Proprietary information of Curtiss Wright © 2020

33

R T IADS vesrrogemming

2.4 TADS demo model control project

The “ActiveX display - 3D Model Demonstration” project is available for download on
the Curtiss Wright IADS website at https://iads.symvionics.com/support/programming-

examples/

The sample project has code to build an “Attitude Indicator” that simulates an aircraft
dial. It has properties for “Roll”, “Pitch”, and “Heading” as well as “SkyColor” and
“GroundColor”. Any property that you include in your display will be an “access point” on
which the user can modify its contents/characteristics/behavior. Changing the “Pitch” property in
my attitude indicator example would, as expected, cause the display to rotate its graphics to
indicate the new pitch angle. The magic of building an ActiveX control is then to understand the
“scope” of your control’s behavior, and to provide your users every property that you foresee
them changing (within reason, don’t go overboard); and also to supply code that responds to
these property values and outputs the appropriate response (i.e. draw attitude indicator display at
the current value of the roll, pitch, heading, SkyColor and GroundColor properties). When this is
complete, the user can drive any of these properties, with data from IADS, simply by
dragging/dropping a parameter on your newly created display; or they can set any of these
properties to a constant value using the “right-click™ properties sheet of the display. The best part
is that all you have to do is worry about what properties to add and how to implement them, and
IADS will take care of ALL of the data related issues.

Aw.38-ThuFeb1115:21:362016@jennifer3600ge [E=EE

ThIS window has NOT been classified

|| % H M / M @ Reset || Freg RFreq ResP ResA l%LL || & ﬁi LAmp I‘PF_I:% %m ﬂ'ﬁ llJ;%cFllter || ALL 1 2 5 10 2

-

This window has NOT been classified

July 2020 Proprietary information of Curtiss Wright © 2020 34

https://iads.symvionics.com/support/programming-examples/
https://iads.symvionics.com/support/programming-examples/

CURTISS -
WRIGHT

INDS.

IADS Programming

User Guide

3. Custom Derived Functions

For more background on how to build a custom function, download the tutorial with
sample function (zip) on the Curtiss Wright IADS website; and read the comments within the

code: https://iads.symvionics.com/support/programming-examples/

Some projects will use files provided in the “Custom Derived Function Helper Classes”

download.

3.1 Creating a custom derived function using C# VS2015
1) Openup VS2015 and Select File > New > Project.

M Start Page - Microsoft Visual Studio (Administrator)
File Edit View Debug Team Tools Test Analyze Window Help
New * @3 Project. Ctrl+Shift+ N
Open * "3 Web Site... Shift+ Alt+N
Close WZ Team Project...
&= Repository...
™ File... Ctrl«M
Project From BExsting Code...

2) Inthe New Project dialog that appears, choose the “Visual C#” tier and click the Class

2)

Library option. At this point, please read the next step before you finish completing the

dialog. There are some important considerations when choosing the proper project name.

Plan on creating many functions in one “project” (most common and easier to manage the
code). The project name should be similar to the “Genus” of your function, so shoot for
generality. Consider prefixing the project name with your organization like “NASA” or

“Lockheed” and the type of functions you will be adding (example: NasaFluidFuncs).

Now, in the fields at the bottom of the dialog, enter the project name, location, and the

solution name.

July 2020

Proprietary information of Curtiss Wright © 2020

35

https://iads.symvionics.com/support/programming-examples/

CURTISS -

INDS.

IADS Programming

WRIGHT User Guide
Y Pregnit T ks
¥ Baseni KET hsmeworkdd2 « Soriby Defscl - FBE= 2 -
S - Kt] Bank App (Lnsvenal Windowa] VialCs o THwm Ve Co
2 Tomplsius L gt R crastng § ¥ ol beuy

+ Weasal CF :i W e Figevvel Rpygeler Ses Vsl G (4
b Webebl B .
I ':“:IFT ::J W Apphcation [T
a x':‘# Gt -‘ Compole Apgcaisn Wipgsl O
:':: :i A4 HET Wk 2ppkoston Wensml {m
T :j Truwsgd Progaan gl O
:;& g’i i Library (Postaile for K75, Andeoad snd Wirdows) il {0
:‘,':v hﬁi €l Lskrary (Postsbia] [T
¥ :_-rpd-:-“ ﬁ Tk Al iy Wiengal T8
f-..:a.--.q....... . Bl bt Clms Ubrary Vel 7
Meme L |
Locancn chProteis [Bowne |
olinon rama Wl untom o Crewte denchony doi sobitnn
o || ceca |
3) After pressing “OK?”, the project will be ready for editing. Rename the Classl.cs file to
reflect our function name. In this example, we will call it ‘MyFunction.cs’.
- . =
Solution Explorer * I X
@M ©o-sS¢Tm ﬂﬁEI)
Search Solution Explorer (Ctrl+;) 2~ E
fa] Solution 'MyFunctions' (1 project)
4 [c#] MyFunctions
b Properties
P =B References
c Open
Open With...
£* View Code F7
#3 View Class Diagram
Scopeto This
Mew Solution Explorer View
Exclude From Project
o Cut Crl+X
H Copy Ctrl+C
X Delete Del
Rename
A Properties Alt+Enter
July 2020 Proprietary information of Curtiss Wright © 2020 36

CURTISS -
WRIGHT

INDS.

IADS Programming
User Guide

4) In preparation for the next step, we will need to add another “using” directive. In the code
view, add a line “using System.Runtime.IteropServices”.

[Wyfuncioncs” & X

MyFunctions

GO =~ v N & W M

s

-

= S

.

& =

oo 0o

oq

o

Lsin

o

~| #3 MyFun
ystem;
ystem.Collections.Generic;
ystem.Ling;
J

L=

w v owoun

ystem. Text;
ystem.Threading.Tasks;
System.Runtime.InteropServices;

-lnamespace MyFunctions

{

pu
{
}

blic class MyFunction

5) Now we need to focus on the entire function name as it will appear to the IADS end user.
The format of the function name requires two strings separated by a period (“.’). It is best
practice to use the Visual Studio project name as the first portion of the name (before the
period). The portion after the period should be your specific function name. For instance,
ProjectName.ClassName, NasaFluidFuncs.FlowRate, or in this tutorial
MyFunctions.MyFunction. We will define that name explicitly by using the “Progld”
directive. In the code view, type [Progld(‘“MyFunctions.MyFunction)] above your class
definition “public class MyFunction”.

MyFunction.cs® B X

[#] MyFunctions
Slus
us

[T S

us
us

[V I -

us

LEn i LN I & 71

ing
ing
ing
ing
ing
using

[[FrogId("MyFunctions.MyFunction™)]

public class MyFunction

1
1

System;
System.Collections.Generic;
System.Ling;

System. Text;
System.Threading.Tasks;
System.Runtime.InteropServices;
-Inamespace MyFuncticns

- ¥z MyFy

July 2020

Proprietary information of Curtiss Wright © 2020

37

R T IADS vesrrogemming

6) The next step is to implement the interface that IADS requires to call your function. To
accomplish this task, we will need to add a reference to the definition file of the interface.
From the Project menu, select Add Reference.

M MyFunctions - Microsoft Visual Studio
File Edit View Project Build Debug Team Tools Test
o - i - 8 AddWindows Form..

1] Add User Control...

w
2 | Performance Ex
é i) Add Component...
Actions ~
 fctions & 4y AddCloss..
g *s Add Mew Data Source...
= 1 Add New ltem... Ctrl+Shift+A
:F ‘0 Add Existing Item... Shift=Alt=A
=

Exclude From Project
[E Show All Files
Add Reference...
Add Service Reference...
¥ Add Connected Senvice...
Add Analyzer...
£} Set as StartUp Project
&# Manage NuGet Packages...

2 MyFunctions Properties...

7) In the “Add Reference” dialog, select the COM tab. Scroll down until you see “Iads
Function Interface 1.0 Type Library”. Press OK to add the reference to our project.

Reference Manager - MyFunctions ? X
I Assemblies Search COM (Ctrl+E) P~
b Projects Narne Version “ Name:
b Shared Projects GamesConfigServer 1.0 Type Library 1.0 lads Function Interface 1.0 Type
Genesis Teletext Server 1.0 Type Library 1.0 Library
4 COM GPMC Reporting Type Library 20 Created by:
gpmgmt 1.0 Type Library 1.0 Syrvionics, Inc.
Type Libraries GPOAdmin 1.0 Type Library 1.0 Version:
e GPOAdminCustom 1.0 Type Library 1.0 1.0
Group Policy Type Library 1.2 1.2 File Version:
O [mres Il Hanja Dictionary Type Library 1.0 1.0 912
HelicopterFuncs 1.0 Type Library 1.0
Help Service 1.0 Type Library 1.0
HHActiveX 1.0 Type Library 1.0
HHCtrl 4.0 Type Library 4.0
1ADS ActiveX Controls 1.0
IADS Analysis Dialogs Library 1.0
lads ClientWorkstation Object Library 1.0
1ADS Dialegs Library 1.0
lads Dynamics Wizard 1.0
IADS ImageServer Library 1.0
IADS Panel Controls 1.0
I1ADS Property Dialegs Library 1.0
1ADS Utilities Library 1.0
1ADS Win32ColorDialeg Library 1.0
lads208Model 1.0 Type Library 1.0
lads3DModel 1.0 Type Library 1.0
ladsABLMaodel 1.0 Type Library 1.0
lad=ArGaunes 1.0 Tune | ihrars 1.0 v
Browse... | | OK | | Cancel

July 2020 Proprietary information of Curtiss Wright © 2020 38

CURTISS -
WRIGHT

INDS.

IADS Programming
User Guide

8) Now, back in the Solution view, notice that the ladsFunctionLib has been added to our

July 2020

References section. This reference contains the definition of the IADS custom function
interface. Now, we will need to add the interface to our class definition. First, type a colon ‘:’
after the class name and add the text “ladsFunctionLib.IladsFunction”. In essence we will
inherit from the interface definition. After this is complete, we can implement the interface.

My Funcions
[MyFunctions - *2 MyFunctions.MyFunction

1 —lusing System;

2 using System.Collections.Generic;

3 using System.Ling;

- using System.Text;

5 using System.Threading.Tasks;

= using System.Runtime.InteropServices;

7 —Inamespace MyFunctions

8 |{

9 [Comvisible(true}]

1@ [ProgId{"MyFunctions.MyFunction™}]

11 = public class MyFunction |; IadsFunctionLib.ITadsFunction

12 7

13 = #region IladsFunction Members

14 = public woid Compute(ref cbject dataln, ref object datalut)

9) To implement the interface, click on the “ladsFunctionLib.ITadsFunction” text in the code

view window. You will see the ‘quick action’ (light bulb) icon. Select the icon and select

Implement Interface.

MyFunction.cs* & X

[MyFunctions = *z MyFunctions.MyFunction
1 Slusing System;
2 using System.Collections.Generic;
3 using System.Ling;
= using System.Text;
5 using System.Threading.Tasks;
= using System.Runtime.InteropServices;
7 -lnamespace MyFunctions
8
9 [ProgId("MyFunctions.MyFunction™)]

< public class MyFunction: TadsFunctionlib.ITadsFunction

149D~

E € 50535 ‘MyFunction' does not implement interface member
'lladsFunction.Compute(ref object, ref object)’

.- Implement interface

1 Implement interface explicitly

[FProgId{“MyFunctions.MyFunction™)]
public class MyFunction: IadsFunctionlLib.ITadsFumction
public class '-'yFU'cti:rD: IadsFunctionLib.ITadsFunction

public woid Compute{ref object datalm, ref object datalut}) |

1

throw new NotImplementedException();

}

Preview changes

Fix all occurrences in: Docurmnent | Project | Solution

Proprietary information of Curtiss Wright © 2020

39

cURTI==" TADS vosrogenmn

10) After choosing the “Implement Interface” menu item, Visual Studio automatically writes the
shell of the function we must implement. Within the function, the “ref object dataln”
argument represents an array of input argument values from the IADS environment. The “ref
object dataOut” represents the single return value that we are allowed to return. For example,
if a user typed a derived equation MyFunction.MyFunction(1,2,Param1), the dataln object
would be an array of three elements containing the values 1,2, and the value of Param1
respectively. Our job is to take the input values, run some mathematical algorithm, and
produce a single object ‘result’. Discussions on returning multiple results from a single
function call will be touched upon at a later time. For simplicity sake, let us focus on the
multiple in, single out technology.

11) During this next step, we will need to decode the dataln object and extract the input
parameter values. When that is complete, we can perform our calculation and return the
result. In the code window remove the line of code containing the “throw” statement. Add
the following code it its place:

Array dataInArray = (Array)dataln;
Double argl = Convert.ToDouble(dataInArray.GetValue(9));

Double arg2 = Convert.ToDouble(dataInArray.GetValue(1l));
Double arg3 = Convert.ToDouble(dataInArray.GetValue(2));

dataOut = argl + arg2 + arg3;

When you complete, your code should appear as follows:

[#] MyFunctions - *13 MyFunctions.MyFunction
1 —lusing System;
2 using System.Collections.Generic;
3 using System.Ling;
- using System.Text;
5 using System.Threading.Tasks;
6 using System.Runtime.InteropServices;
7 —Inamespace MyFunctions
g |1
9 [ProgIld("MyFunctions.MyFunction™}]
18 - public class MyFuncticn : IadsFunctionLib.IIadsFuncticon
11 {
12 = #region ITadsFunctiocn Members
13 = public wvoid Compute(ref chject dataIn, ref cbject dataOut)
14 1
15 Array datalnArray = (Array)dataln;
16 argl = Convert.ToDouble(dataInArray.GetValue(@));
17 arg2 = Convert.ToDouble(dataInArray.GetValue(l});
18 arg3 = Convert.ToDouble(dataInArray.GetValue(2));
19 datalut = argl + arg2 + arg3;
28
21 }
22 #endregion
23 }
A 1

July 2020 Proprietary information of Curtiss Wright © 2020 40

R T IADS vesrrogemming

12) Notice in the first line, we cast the ‘dataln’ array to a C# array type object. This will allow us
to extract each function input argument in the subsequent lines of code. The first argument
passed into this function from IADS is array element 0, the second argument is 1, and so on.
By using the ‘Convert’ object, we can assign each input argument to a temporary variable.
Once these temporary variables are assigned, we can perform our calculation and return our
result. To return a result, simply assign the computed value to the ‘dataOut’ object.

13) At this point, you can begin modifying the code in the function to perform your specific
computation. For more background on how to pass arguments, check their types, and return
values, please refer to the SampleFunction project included with this tutorial. Make sure to
read the comments in the supplied compute functions.

14) Now that your function is basically complete, we must take care of some remaining interop
issues. We must ensure that the function is compiled with the necessary COM code so that it
can communicate with IADS. In the code view, type [ComVisible (true)] above the
Progld definition line.

MyFunction.cs* & X

[#] MyFunctions = ¥ MyFunctions.MyFunction
1 —lusing System;
2 using System.Collections.Generic;
3 using System.Ling;
- using System.Text;
5 using System.Threading.Tasks;

= using System.Runtime.InteropServices;
7 —Inamespace MyFunctions

8 |1

g [ComVisible(true)]|

1@ [ProgId{"MyFunctions.MyFunction™)]

11 - public class MyFuncticn : ILadsFunctionLib.IIadsFuncticn

In the “Project” drop down menu, select Properties.

M MyFunctions - Microsoft Visual Studio

File Edit View Project Build Debug Team Tools Test
Q- 3 - 18 AddWindows Form...

ﬂ Add User Control...

) 1 Add Component...

Actions~ Bl | e 544 Class...

w Add Mew Data Source...

Performance Exp

0 Add New ltem... Ctrl+Shift+ A
‘O Add Existing ltem... Shift+Alt+A

xoq|oo) Jaso)dig samag
+

Exclude From Project
B Show Al Files
Add Reference...
Add Service Reference...
t{;& Add Connected Service...
Add Analyzer...
£} Setas StartUp Project
& Manage NuGet Packages...
v

MyFunctions Properties...

July 2020 Proprietary information of Curtiss Wright © 2020 41

R T IADS vesrrogemming

15) Under the “Build” tab, scroll down to the bottom and check the Register for COM interop
option. These two last steps are very important. If you forget this step, or the previous
[ComVisible (true)]directive step, the function will remain undefined in IADS

because it will not properly registered on the system.

Application) . - -
m Configuration: | Active (Debug) ~ Platform: | Active (Any CPU) ~
Build Event:
Hiie Events Platform target: Any CPU ~
Debug
Resources
. [Allow unsafe code
Services
Settings O Optimize code
Reference Paths Errors and warnings
Tepilg Warning level: 4 ~
Code Analysis
Suppress warnings:
Treat warnings as errors
® None
O Al
() Specific warnings:
Qutput
Output path: bin\Debug' Browse...
[XML documentation file:
Register for COM interop
Generate serialization assembly: Auto -
Advanced...

To debug the function, go to the “Debug” tab in the same dialog and set the “Start external
program” item to the location of the IADS executable, in this case “C:\Program
Files\Iads\ClientWorkstation\lads.exe”.

Application) . - -
Configuration: | Active (Debug) w Platform: | Active (Any CPU) w
Build*
Build Events Start Action
Debug*
O sar project
Resources
(@ Start external program: | C\Program Files\IADS\ClientWorkstation\lads.exe | D
Services
Settings () Start browser with URL:
Reference Paths Start Options

16) When all these steps are complete, compile the project, fix any errors and run. In IADS, build
a new derived parameter that calls your new function, and drop the parameter in any display.
If you want to debug your calculation step by step, put a break point in your compute
function. The code will break for each new data point calculated.

July 2020 Proprietary information of Curtiss Wright © 2020 42

cURTI==" TADS vosrogenmn

Note: See section 3.3 to access your new function in [ADS.

3.1.1 Debugging your new function in IADS

1) Bring up your Visual Studio custom function project, and place a break point in your
“Compute” method for testing.

Microsoft.Common....entVersion.targets MyFunctions m:

MyFunctions - %z MyFunctions.MyFunction
—lusing System;

using System.Collecti

using

using tem. Text;

2
3
4 S
5 using System.Threading.Tasks;
6 using System.Runtime.InteropServices;
7 —Inamespace MyFunctions
8 {
9 [ComVisible(true)]
1@ [ProgId("MyFunctions.MyFunction™}]
11 = public class MyFunction : IadsFunctienLib.IIadsFuncticon
12 {
13 = #region IIadsFunction Members
14 = public veid Compute(ref chject dataIn, ref cbject datadut)
15 !
® 15 | datalnArray = (| dataln;
17 argl = Convert.ToDouble(dataInArray.GetValue(@));

2) To run IADS from the debugger, go to the “Debug” tab in the same dialog and set the “Start
external program” item to the location of the IADS executable, in this case “C:\Program
Files\ADS\ClientWorkstation\lads.exe”.

Application
Lonfiguration: | Active (Debug) w Platform: | Active (Any CPU) w
Build™
Build Events Start Action
Debug*
O Strtproje
Resources
(® Start external program: | C\Program Files\|ADS\ClientWorkstation'lads.exe ‘ E
Services
Settings () Start browser with URL:
Reference Paths Start Options

3) Build your solution again for good measure and click on the Start Debugging command (or
the F5 key); IADS will start. When IADS starts, pick the configuration file you wish to use
and click Open.

4) After IADS initializes, open the Configuration Tool, ParameterDefaults table (PDT) and
create a derived parameter. If you have already created a derived parameter referencing your
function, click on your equation in the PDT.

Notice that when you “tab out” or finish the equation in the PDT, your function will be
called. At this point you can debug all of the argument types and make sure you are getting
the correct items. If you have an argument error and return an error code from your function,
you will get an error message inside of IADS and the equation text will turn red in color.
After you have checked out the arguments, you can remove the breakpoint and debug the
function with real data.

5) Add a display to the new Analysis Window (i.e., Alphanumeric or Stripchart) as described in
section 3.3. If your parameter is not already attached to a display, drag and drop our new

July 2020 Proprietary information of Curtiss Wright © 2020 43

R T IADS vesrrogemming

function into the display. Your break point should now hit in the debugger. You can now step
through your computational code as necessary.

Again, for more background on how to pass arguments, check their types and return values,
please read the comments in the example project.

July 2020 Proprietary information of Curtiss Wright © 2020 44

cURTI==" TADS vosrogenmn

3.2 Creating a custom derived function using C++ VS2015

1) Openup VS2015 and Select File > New > Project.

M Start Page - Microsoft Visual Studio (Administrator)

File Edit View Debug Team Tools Test Analyze Window Help

New * @3 Project. Ctrl+Shift+ N
Open * %3 Web Site... Shifts Alt+N
Close ¥ Team Project...

o Repository...

" File... Ctrl=M

Project From Basting Code...

2) In the New Project dialog that appears, choose the “Visual C++ > ATL” tier and click the
ATL Project option. At this point, please read the next step before you finish completing the
dialog. There are some important considerations when choosing the proper project name.

Mew Project ? x

b Recent MET Framework 452~ Sort by: Default - i Search Installed Templates (Ctrl+E) P~

4 |nstalled o .
I ATL Project Visual C++ Type: Visual C++
-

A project that uses the Active Template
b Visual C# Library

I+ Visual Basic

4 Templates

b JavaScript
Visual F#
4 Visual C++
b Windows
ATL
CLR
General
MFC
Test
Win32
Cross Platform
Extensibility
SQOL Server
Python
PowerShell
b TypeScript

b Online Click here to go online and find templates.

MName: |MyCFuncti0ns| |

Location: c\Projects -

Solution: Create new solution

Solution name: MyCFunctions Create directory for solution

[] Create new Git repository

3) The project name you choose will become part of the function identifier name (aka ProgID,
see inset). When it comes time to use your function in IADS, users will call your new
function in a derived equation based solely upon its ProjectName.ObjectName (we will add
the specific object name later). Plan on creating many functions in one “project” (most
common and easier to manage the code). One way to look at it is that the project name is akin

July 2020 Proprietary information of Curtiss Wright © 2020 45

cURTI==" TADS vosrogenmn

to the “Genus” of your function, so shoot for generality. Consider prefixing the project name
with your organization like “NASA” or “Lockheed” and the type of functions you will be
adding (example: NasaFluidFuncs).

Now, in the fields at the bottom of the dialog, enter the project name, location, and the
solution name.

After pressing OK, the “ATL Project Wizard” dialog will appear as below.

ATL Project Wizard - MyFunction ? *

Welcome to the ATL Project Wizard

Overview These are the current project settings:

Application Settings # Dynamic-Link Library

Click Finish from any window to accept the current settings.

After you create the project, see the project's readme. txt file for information about the project
features and files that are generated.

| Mext = | | Finish | | Cancel |

4) Click the Next button in the Wizard. On the new wizard page, ensure that the “Dynamic Link
Library (DLL)” is checked. Every function that runs in IADS is of type DLL because it
allows for maximum speed in computing calculations. Press the “Finish” button and the
Wizard will set up your project.

ATL Project Wizard - MyActiveXControl ? x
El | Application Settings
Overview .ﬂp_plication type: Support options:
(®) Dynamic-ink library (DLL) [] Allow merging of proxy/stub code
Application Settings [] Support MFC
() Service (EXE) [Suppart COM+ 1.0
O
[] security Development Lifecyde (SDL)
checks
File type handler options:
File extension:

July 2020 Proprietary information of Curtiss Wright © 2020 46

CURTISS -
WRIGHT

INDS.

IADS Programming
User Guide

5) Next, go to the “ClassView” tab in Visual Studio’s workspace and right-click on the project
name. Choose “Add->Class”.

oy

|y B

Build

Rebuild

Clean

View

Analyze

Project Only

Retarget SDK Version
Profile Guided Optimization
Project Dependencies...
Project Build Order...
Build Customizations...
Add

Class Wizard...

Add Reference...

Add Connected Service...
Manage NuGet Packages...
Set as StartUp Project
Debug

Save MyCFunctions

Sort Alphabetically

Sort By Object Type

Sort By Object Access

e

#, o {a.-

<Search>

i

]
Ctrl+Shift+X

Ctrl+5

IsPS

+‘F: Class...

""P; Resource...

eam Explorer Class View

6) Upon adding a new class you will be presented with a dialog. Click the ATL tier and ATL

Simple Object as shown below. When that is complete, press the Add button.

July 2020

Proprietary information of Curtiss Wright © 2020

47

CURTISS - IADS Programming
WRIGHT ® User Guide

Add Class - MyC++Functions 7 X
4 Installed | Sortby: Default E Search Installed Templates (Ctrl<E) @ =
Visual C + .
4 Visual b rl ATL Simple Object Visual Co+ Type: Visual C++
CLR . .
Adds a simple Active Template Library
ATL £ object
ATL Control Visual Cr+ i
C++ o ?
MEFC 4
‘. ATL OLEDB Consumer Visual Cr+
]
b Online
-t
[E=] ATL Diclog Visual Cr+
Add ATL Support To MFC Visual Cr+
.
ATL Property Page Visual C++
—
i ATL OLEDB Provider Visual C++
éj ATL Active Server Page Component Visual C++
@i ATL COM= 1.0 Component Visual C++
Click here to go online and find
Hame:
Location: - Browse...

July 2020 Proprietary information of Curtiss Wright © 2020 48

cURTI==" TADS vosrogenmn

7) On the first tab, enter the name of your function in the “Short Name” field. The wizard will
fill out the rest of the tab automatically. For this example, I used “FunctionName” as the
short name. The name entered will be combined with your project name and will present the
final function name inside of IADS (ProjectName.FunctionName) as explained on page 1.
See the “ProgID” field in your dialog for your final [ADS function name. Warning: Newer
VisualStudio versions do not automatically populate the ProgID field. Please ensure the
ProglID field contains your specific ProjectName.FunctionName text. If not, please type in
the appropriate text manually. Press “Finish” to continue.

ATL Simple Object Wizard - MyCFunctions ? *
ﬁ Welcome to the ATL Simple Object Wizard
C++
Names
File Type Options Short name: h file:
Options |FuncﬁonName | |Funcﬁu:unName.h | EI
Class: .cpp file:
|CFuncﬁDnName | |FuncﬁDnName.cp|:| | III
COoM
Codass: Type:
|Funu:tionName | |FLII'|Ctil:II'|NaI'I'|E Class |
Interface: ProgID:
|IFuncti|:|nName | |MyCFunctiu:|ns.Funu:tiu:nnName| X |
| Mext = | | Finish | | Cancel |

8) At this point, the Wizard will automatically create the shell of your function code. All we
need to do now is to take care of the interface portion of the function. Basically, we will need
to implement the defined “IladsFunction” interface so that the function will be compatible
with the IADS environment.

Download the “Custom Derived Function Helper Classes” on the Curtiss Wright IADS web
site: https://iads.symvionics.com/support/programming-examples/

After you have downloaded the zip file, unzip its contents into your project folder. While
unzipping, you will notice a file called “IadsFunction.idl”. That is the file we will use to
implement the interface.

July 2020 Proprietary information of Curtiss Wright © 2020 49

https://iads.symvionics.com/support/programming-examples/

CURTISS -
WRIGHT

INDS.

IADS Programming
User Guide

9) Now let’s add the [adsFunction.idl to the project. Click the View tab at the top menu bar and

select Solution Explorer.

Edit
- © kil

File View | Project

w MyCFunctions - Microsoft Visual Studic (Administrator)
Build

Debug

Solution Explorer

Teamn

Ctrl+Alt+L

Tools T

10) Expand you Solution, Right-click on the Project name, and select Add > Existing Item...

-

2

2 Build
Rebuild
Clean
View
Analyze
Project Only
Retarget SDK Version

Scopeto This

Mew Sclution Explorer View
Profile Guided Optimization
Build Dependencies

Add

E-}‘ Class Wizard...

Solution Explorer
@ ©-

Search Solution Explorer (Ctrl+;)

|

SUOI3E3IY

50w 4=

fad Solution 'MyCFunctions' (2 projects)

Ctrl+Shift+x

pendencies
Files
nctions_i.c
nctions_ih
33

.h

nMame.h
re.h

er.h

iles
nMarme.rgs
nctions.rc

*I:l Mew ltem...
in| Existing ltermn...

vl'll.}(

P'

Ctrl+5Shift+4
Shift+Alt+4

July 2020

Proprietary information of Curtiss Wright © 2020

50

CURTISS -
WRIGHT

IADS Programming
User Guide

INDS.

11) In the File Name box, type “*.id]” and then the enter key to show the Interface Definition
Language files. Choose “ladsFunction.idl” and then press the OK button to add the file into
your project. This should be the same [adsFunction.idl file that you unzipped in step 9.

opencv-haar-cla
positive_images

zharcodereader
Eﬂ Microsoft Visual 5

f@ OneDrive

=l C\Projects\MyCFunctions\MyCFunctions

=] lads.idl
=l C\Projects\MyCFunctions\MyCFunctions

=] ladsFunction.idl
=1 CM\Projects\MyCFunctions\MyCFunctions

=] ladsTime.idl

Size: 355 bytes

Date modified: 9/12/2012 1:01 PM
Size: 145 KB

Date modified: 9/13/2007 9:42 PM
Size: 284 KB

Date modified: 9/4/2007 8:52 PM

E5] Add Existing ltem - MyCFunctions b
&« « 4 [l » Search Results in MyCFunctions v | O | Fadl ®

- Add a search filter

Organize « . .
Date modified: Size:
=] Pictures N L
=] MyCFunctions.idl Date modified: 2/14/2017 1:40 PM
MyVideoOverlay =

= CA\Projects\MyCFunctions\MyCFunctions Size: T.28 KB

[This PC
[Desktop
@ Documents
‘ Downloads
J‘! Music

Search again in:

'r Libraries O This PC El Custom... DFiIeContents

&=/ Pictures
m Videos
e Local Disk (C:)

') CD Drive (F)
v

File name: | v| | ANFiles) v

Add Cancel

12) Due to an apparent bug in Visual Studio 2015 (and earlier), we will have to manually correct
the output of the ladsFunction.idl file. Apparently, Visual Studio attempts to merge this
information into the output of your project’s idl file, but it does seem to work properly.
Right-click on the IadsFunction.idl in your Solution Explorer and select “Properties”.

a 4 1 Source Files
B *+ dilmain.
. .l imain.cpp
++ FunctionMame.cpp
rh‘l 5 NCTICHN, I3
¢* Open cpp
Open With... pef
dl
€» View Code F7
‘q View Cllazs Disgram
a Compile Ctrl+F7

Scopeto This
f er Class View Resource View

E-:-] Mew Solubion Explorer View

* [

Exclude From Project
M Cwm Chrl+ X ’
O} Copy Ctrl+C
X Remove Del .)
ladsFunctionad]
1 Rename Foloe
& Properties Alt+Enter 0L Eile
July 2020 Proprietary information of Curtiss Wright © 2020

CURTISS -
WRIGHT

IADS Programming
User Guide

INDS.

13) In the Property Pages dialog that appears, select the “All Configurations” drop down in the
upper left-hand corner of the dialog. It is best to also select “All Platforms” in the Platform
drop down. Open the MIDL->Output tier in the left window pane and correct the “Header
File”, “IDD File”, “Proxy File”, and “Type Library” fields using the base name
“ladsFunction”. When you are complete, the dialog should match the picture below. After
confirming the dialog contents, press OK.

ladsFunction.id! Property Pages ? x

Configuration: | All Configurations ~ | Platform: | All Platforms ~ Configuration Manager...

4 Configuration Properties Output Directory

Command Line

Type Library

General Metadata File
4 MIDL Header File ladsFunction.h
General DllData File
Output IID File ladsFunction_i.c
Advanced Proxy File ladsFunction_i.p
All Options Generate Type Library No [/natlb)

$(IntDir)/ladsFunction.tlb

Generate Client Stub Files
Generate Server Stub Files
Client Stub File

Server Stub File

Type Library Format

Header File
Specifies the name of the generated header file (/h filename)

July 2020 Proprietary information of Curtiss Wright © 2020 52

CURTISS -
WRIGHT

INDS.

IADS Programming
User Guide

14) Now, build your Solution. After the build process is complete, a “typelib” file will be
created. We can use this typelib file to implement the ladsFunction interface. The typelib file
is simply a compiled binary version of the IDL file.

Project

Build

w MyCFunctions - Microsoft Visual Studio (Administrator)
File Edit View

Debug Team Tools

3 -2 o ¥ Build Solution

Test

Analyze
Ctrl+5hift+B

Wi

15) Go back to the ClassView tab of the Workspace viewer. Right-click on the “C[your function
name]” class object and then choose “Add->Implement Interface...”

L
LA A

&

0= B

LS

»

Ml Class View > X

2
-
FY

View Class Diagram
Go To Definition

Go To Declaration
Browse Definition
Find All References
Filter To Type

Add

Class Wizard...

Copy

Rename...

Sort Alphabetically
Sort By Object Type
Sort By Object Access
Group By Object Type

Properties

o B %

<Search>

4 [%] MyCFunctions
[ow Maps

@ Global Functions and Variables

I»l Macros and Constants

Module
F12
Ctrl+F12

ib
Shift+F12

* 2o Implement Interface...

Ctrl+Shift+X D Add Function...
Ctrl+C ‘@ AddVariable...
Ctrl+R, Ctrl+R =0 Add Connection Point...

- o

Alt+Enter

In the Implement Interface dialog, ensure that the ladsFunctionLib<1.0> library is selected in
the “Available type libraries” drop down. When that is complete, you will notice that the
[TadsFunction interface appears in the “Interfaces™ list. Select IladsFunction and press the
“>” button. When IladsFunction appears in the “Implement Interfaces™ list, press Finish.

July 2020

Proprietary information of Curtiss Wright © 2020

53

CURTISS -
WRIGHT

INDS.

IADS Programming

User Guide

=
-0
Implement interface from:

(@ Project (O) Registry () File

Interfaces:
IladsFunction

Implement Interface Wizard - MyCFunctions

Welcome to the Implement Interface Wizard

Available type libraries:

| TadsFunctionlib<1.0

s

Implement interfaces:
IladsFunction

L]
[>]
[]
[«]

| Finish

| | Cancel |

16) We’re almost done now. At this point we can concentrate on the actual function code (at
last). In the Solution Explorer tab of the Workspace View, locate your “[Function Name].h”
file and click on it to begin edit. Scroll down to almost the end of the source code and locate
the wizard generated code:

STDMETHOD (Comput
{

e) (VARIANT * dataln,

// Add your function implementation here.
return E NOTIMPL;

}

VARIANT * dataOut)

Remove this entire function as we are about to inject some example code.

17) In the place of the code you just removed, insert the following example code:

STDMETHOD (Compute) (

{
int argCount
if (argCount
{

/*[in]*/ VARIANT* dataln,

/*[out]*/ VARIANT* dataOut

dataln->parray->rgsabound->cElements;

| =

3)

return DISP_E BADPARAMCOUNT;

}

// Now,

VARIANT* argsArray

// Second Step
// point wvalue

if (argsArray
if (argsArray
if (argsArray

// Third step:

July 2020

get the input arguments array
(VARIANT*) (dataIn->parray->pvData);

: Check Types of each arg

), VI _BSTR (string value)
[0].vt != VT R8)
[1].vt != VT R8)
[2].vt != VT _R8)

Either VT R8 (floating

for now...

return E INVALIDARG;
return E INVALIDARG;
return E_INVALIDARG;

Get the actual values of each arg by extracting from

Proprietary information of Curtiss Wright © 2020

54

CURTISS -
WRIGHT

IADS Programming
User Guide

INDS.

// the array of input arguments

register double pl = argsArray[0].dblVal;

register double p2 = argsArray[l].dblval;

register double p3 = argsArray[2].dblVal;

// Final step: Perform your function's purpose and return the output
// value. Because we're returning a number, the return type is VT R8
// (double) for now. IADS will convert if necessary..

dataOut->vt = VT RS§;
dataOut->dblval =

return S_OK;

pl + p2 + p3;

When that step is complete, your code should like something this:

w MyCFunctions - Microsoft Visual Studio (Administrator)
File Edit View Project Build Debug Teamn Tools Test Analyze Window Help
Q- B-2 9 - Debug - x86 = P Local Windows Debugger ~ & : |S] =2 N -
§ Performance Explorer = » R X stdafx.cpp™
i Actions - &= [l MyCFunctions ~ *3 CFunctionName - @ g
= ==
=z 59
z 6@ // IIadsFunction Metheds
- 61 public:
g 62 S| STOMETHOD(Compute)(/*[in]*/ VARIANT* dataIn, /*[out]*/ VARIANT* dataOut)
= 63 {
o]
= 64 int argCount = dataln-»parray->rgsabound->cElements;
65 = if (argCount != 3)
66 {
67 return DISP_E BADPARAMCOUNT;
68 }
2]
78 // MNow, get the input arguments array
71 VARIANT* argsArray = (VARIANT*)(dataIn-»parray->pvData);
72
73 = // Second Step: Check Types of each arg..... Either VT_R8 (floating
74 // point value), VT_BSTR (string value) for now...
75 if (argsArray[@].vt != VT_R8) return E_INVALIDARG;
76 if (argsArray[1].vt != VT_R&) return E_INVALIDARG;
77 if (argsArray[2].vt != VT_R8) return E_INVALIDARG;
78
79 = // Third step: Get the actual values of each arg by extracting from
ge // the array of input arguments
81 register double pl = argsArray[@].dblval;
32 register double p2 = argsArray[1].dblval;
83 register double p3 = argsArray[2].dblval;
a4
85 = // Final step: Perform your function's purpose and return the output
86 // value. Because we're returning a number, the return type is VT_R8
87 // (double) for now. IADS will convert if necessary..
88 dataOut-»wvt = VT_R8;
39 datalut-»dblval = pl + p2 + p3;
98
91 return 5_0K;
92 1
a3

18) Now, build the solution. After the build is complete you will notice that we have link errors.
This is a continuation of the Visual Studio bug as noted in steps 11 and 12. To correct the
errors, we will need to add the newly created ladsFunction files into the StdAfx.cpp file.

In the Solution Explorer, click on the StdAfx.cpp file and add the following lines to the
source code:

#include “ladsFunction.h”
#include “ladsFunction i.c”

July 2020 Proprietary information of Curtiss Wright © 2020 55

cURTI==" TADS vosrogenmn

m MyCFunctions - Microsoft Visual Studie (Administrator)

File Edit View Project Build Debug Team Tools Test Apalyze Window Help

e - B2 9 - Debug -~ BB = P Local Windows Debugger ~ 57 _ [=) = 2= A
Performance Explorer v 0 X EGEEE TGRS FunctionMame h*
Actions = = @M}rCFunctions - (Global Scope)

-I// stdafx.cpp : source file that includes just the standard includes
// MyCFunctions.pch will be the pre-compiled header
// stdafx.cbj will contain the pre-compiled type information

#include "stdafx.h"

Einclude “TadsFunction.h”

#include “IadsFunction_i.c”

¥ogqloo] Jado|dxg Jaaag

[T, - TTR

[|

19) At this point, you can begin modifying the code in the function to perform your specific
computation. For more background on how to pass arguments, check their types, and return
values, please refer to the SampleFunction project included with this tutorial. Be sure to read
the comments in the supplied compute functions.

20) After you are done modifying the code, build the Solution. By building your Solution, the
new dll should be registered so you are ready to run and debug it now inside of IADS. The
next section in the tutorial describes how to debug the function.

If you want to use your function on another PC, you will need to register the dll on that
specific PC. Please consult the web for documentation on “regsvr32.exe” and how to perform
this procedure.

If you want to add another function, simply repeat steps. You can add as many functions to
this project as you would like and they will all be accessible through the same dll (i.e.
MyFunction.FunctionNamel, ..., MyFunction.FunctionNameN). If you wish to create an
entirely new dll and set of functions, you will need to repeat this entire tutorial using a unique
project name.

Note: See section 3.3 to access your new function in [ADS.

July 2020 Proprietary information of Curtiss Wright © 2020 56

R T IADS vesrrogemming

3.2.1 Debugging your new function in C++ VS2015

1) Bring up your Visual Studio custom function project, and place a break point in your
“Compute” method for testing.

[® MyCFunctions - 3 CFunctionName
59
60 // IladsFunction Methods
61 public:
62 = STDMETHOD (Compute)(/*[in]*/ WARIANT* dataln, /*[out]®/ VARIANT* datalut)
63 I

[] 64 | int argCount = dataln->parray->»rgsabound->cElements;
65 = if (argCount != 3)
66 {
67 return DISP_E_BADPARAMCOUNT ;
53 1
69
7e J/ Now, get the input arguments array
71 VARIANT* argsArray = (VARIANT*)(dataIn->parray->pvData);
72
73 = // Second Step: Check Types of each arg..... Either VT_R8 (floating
74 // point value), VT_BSTR (string value) for now...
75 if (argsArray[@].vt != VT_R8) return E_INVALIDARG;
76 if (argsArray[l].vt != VT_R8) return E_INVALIDARG;
77 if (argsArray[2].vt != VT_R8) return E_INVALIDARG;
78
79 = // Third step: Get the actual values of each arg by extracting from
8@ // the array of input arguments
a1 register double pl = argsArray[@].dblval;
82 register double p2 = argsArray[1].dblval;
83 register double p3 = argsArray[2].dblval;
84

2) Go to Project > [ProjectName] Properties drop down menu in Visual Studio, and in the
dialog that appears pick “lads.exe” as your “Executable for debug session”. The lads.exe file
is in your “C:\Program Files\Iads\ClientWorkstation” directory. When you are ready to
continue, press the OK button.

MyFunction Property Pages ? X
Configuration: | All Cenfigurations ~ | Platform: | All Platforms ~ Configuration Manager...
4 Configuration Properties Debugger to launch:
Cenc:al Local Windows Debugger w
Debugging
b \C[C’(++ DEscEches Command “C:\Program Files\lads\ClientWorkstation\lads.exe™
- Command Arguments flocal
b Linker \Werking Di S(ProiectDi
I Manifest Tool orking Directory (ProjectDir)
Attach No
I Resources
b MIDL Debugger Type Auto
I XML Document Generator Environment
I Browse Information Merge Environment Yes
> Build Events SOL Debugging No
I Custom Build Step Amp Default Accelerstor
I Code Analysis
Command
The debug command to execute,
< >
Cancel Apply

3) Build your Solution again for good measure and click the Go command (or the F5 key).
IADS will start. When IADS starts, pick the configuration file you wish to use and click
Open.

July 2020 Proprietary information of Curtiss Wright © 2020 57

T TADS #osrgemmns

4)

5)

After IADS initializes, open up the Configuration Tool and create a derived parameter in the
ParameterDefaults table. If you have already created a derived parameter referencing your
function, simply click on your equation in the ParameterDefaults table.

Notice that when you “tab out” or finish the equation in the Parameter Defaults table, your
function will be called. At this point you can debug all of the argument types and make sure
you are getting the correct items. If you have an argument error and return an error code from
your function, notice that you will get an error message inside of IADS and the equation text
will turn red in color. Once you have checked out the arguments, you can remove the
breakpoint and debug the function with live data.

Add a display to the new Analysis Window (i.e. Alphanumeric or Stripchart) as described in
the section 3.3. If your parameter isn’t already attached to a display, simply drag and drop
your newly built derived parameter into the display. Your break point should now hit in the
debugger. You can now step through your computational code if necessary.

July 2020 Proprietary information of Curtiss Wright © 2020 58

CURTISS -
WRIGHT

IADS Programming
User Guide

INDS.

3.2.2 Deploying your new function in C++ VS2015

When it comes time to deploy your new function to users on other PCs, you need to
consider a couple of issues. One issue is that your control may require some auxiliary dlls that
are not available on the other systems. If that occurs and the dlls are missing, the function may
not operate. To help minimize this possibility, you must always build your new function dll in
“Release” mode. You should never distribute a function dll that has been compiled under the
“Debug” mode. The debug mode uses libraries that will most certainly be missing on any
machine without Visual Studio installed. Beyond that, it is always best to ‘statically link’ all the
runtime libraries. Also, since we have used ATL to build this function, we will need to statically
link the ATL library as well.

1) In Visual Studio, select the Project > Properties drop down menu. Make sure that the
“Configuration” dropdown is set to “Release”. Under the “Configuration Properties > C/C++
> Code Generation” tier, set the “Runtime Library” to Multi-threaded (/MT).

MyCFunctions Property Pages ? *

Configuration: | All Configurations ~ | Platform: | All Platforms ~ Configuration Manager...

4 Configuraticn Properties Enable String Pocling

General Enable Minimal Rebuild <different options>
Debugging Enable C++ Exceptions Yes (/EHsc)
VC++ Directories Smaller Type Check Mo

4 C/Cre Basic Runtime Checks <different options=
Gener S -
Optimizaticn Struct Member Alignment Default
Preprocessor Security Check Enable Security Check (/G5)

Eode Genciation Control Flow Guard

anguag? Enable Function-Level Linking
Precompiled Headers ;
Enable Parallel Code Generation

Output Files i
B tan o Enable Enhanced Instruction Set Mot Set
Advanced Floating Point Model Precise (/fp:precise)
All Options Enable Floating Point Exceptions
Command Line Create Hotpatchable Image
I Linker
I Manifest Tool
I Resources
- MIDL
I XML Document Generator
I Browse Information
I Build Events
b Custom Build Step
b CreRcne s Runtime Library
Specify runtime library for linking. (/MT, /MTd, /MD, /MDd)
< >

Cancel Apply

July 2020 Proprietary information of Curtiss Wright © 2020 59

T TADS #osrgemmns

2) Once you have made these changes to your project, you should rebuild your ‘solution’. Make
sure once again that your current configuration is set to “Release” and then select the Build >
Rebuild Solution drop down menu option. After this step is complete, your function dll
should be in your project “Release” folder. It should now be ready to deploy on another
system.

The function dlI will need to be copied to the other PC and ‘registered’. In order to register
the dll, you will have to run the ‘regsvr32.exe’ program. One easy way to accomplish this is
to double click on the dll in Windows Explorer. When asked what program to execute on the
dll, navigate to the Windows\System32 directory and choose the regsvr32.exe file. This
procedure may be different if the operating system is a 64-bit version. Please consult the
online documentation for specifics.

If the dll fails to register at this point, it most likely failed to statically link the needed dlls.
We can investigate which dlls are missing by using the “Dependency Walker” tool. The
Dependency Walker program is located within the Microsoft Visual Studio\Common\Tools
directory and is named “Depends.exe”. Copy Depends.exe from your development PC to the
target PC and run the program. From the File drop down menu select Open and choose your
function dll. Examine the module list in the bottom window pane. Any missing dependent
dlls should show up with a question mark. Search for those dll names on the net and find out
their purpose. It might help you narrow down what solution setting you have missed. It is
also possible that the missing dll is a private library that you are using, in which case you will
need to either static link or copy that dll to the target machine as well.

July 2020 Proprietary information of Curtiss Wright © 2020 60

R T IADS vesrrogemming

3.3 Accessing your new function in IADS

1) Run IADS and login to a test desktop.
2) Press the Configuration button on the IADS Dashboard in the lower right-hand corner of the

screen.
ParameterT ool Display Builder ChangeDesktop Performance
Global Time Message Log Save Config Log Off
IADS Logs b Cenfiguration | HideDashboard Help

3) In the Configuration Tool dialog left window pane, click the “+” sign next to the “Data”
folder to open it and then select the ParameterDefaults table. This is the location in IADS
where you will build a new derived parameter to test your function.

ConfigurationTecl: Editing table ParameterDefaults

File Edit View Tools Window Help
FE @ s 228z i JFTFT IF|EHFTES

Bl | Automation | ParameterDefaults | Parameter | ParamType | ParamGroup | Pararm5SubGroup
B Data 257 Import TestAscii2 ascii Rotor Test
: DataGroups 258 Import TestAsciid ascii Rotor Test
e Envelopes 259 Impert TestAsciid ascii Rotor Test
E ParameterDefaulteState 260 Impert TestAsciis ascii Rotor Test
H ParametersSavedinDisplays 261 Import TestAperiodic float Rotor Test
- | Display 262 Import TestSine float Rotor Test
E- | Logs 263
B | Test 264

4) To add a new derived parameter, for speed, simply copy the last line in the table and then
replace our new values as necessary. Select the last row in the table by clicking on the row
number. After the row is selected, press Ctrl+C to copy and then follow that by a Ctrl+V to
paste. You should now see a copy of the last line placed into a new row. When you are done
the table should look something like this:

ConfigurationTool: Editing table ParameterDefaults
File Edit View Tools Window Help
Hd & 2R 2c siulh JTE T|8HT =) | 4 |Not Filtered
E_ | Automation | ParameterDefaults | Parameter | ParamType | ParamGroup | ParamSubGroup | DataSourceType
E‘J Rﬂtﬂ 257 Import Testhzcii2 ascii Rotor Test Derived
DataGroups 258 Import TestAsciid ascii Rotor Test Derived
Envelopes - - -
259 Import TestAsciid ascii Rotor Test Derived
P cterDefaulteStat 260 Import TestAsciid ascii Rotor Test Derived
arameterDefaultsState
ParametersSavedinDisplays 261 Import TestAperiodic float Rotor Test Derived
=
- | Display 262 Import TestSine float Rotor Test Derived
B | Logs 263 Import Copy(1)_Of_TestSine float Rotor Test Derived
[| Test

5) Click into the first column of the new row. As we go, to proceed to the next cell press the
Tab key.

Do not edit the first column, press the Tab key to start editing the second column. In the
second column, type the name of your test parameter “TestMyFunction”. Once you are done
press the Tab key. Now set the type of the parameter; just leave it “float” (i.e. 4-byte floating

July 2020 Proprietary information of Curtiss Wright © 2020 61

T TADS #osrgemmns

6)

point number). In the future if you are testing an Ascii return value, you will need to set this
type to Ascii.

At this point, keep pressing the Tab key until you arrive at the “DataSourceType” column.
Make sure that is set to “Derived”.

In the next column (DataSourceArgument) you will write your derived equation. Now,
remember from the discussion while creating your function regarding the function name.
Enter the function name followed by the arguments:

MyFunctionGroupName.FunctionName(5.0, 10.0, 30.0)

If you want some variety to your test data, you can use something like this:
MyFunctionGroupName. FunctionName(Rand()*5.0, Rand()*10.0, Rand()*30.0)

Or if you already have specific input parameters in mind, you can do something like this:
MyFunctionGroupName. FunctionName(Paraml, Param?2, Param3)

In the next field (UpdateRate), type the sample rate that you desire to update your function. If
your equation is based off of other parameters, the sample rate will be automatically
computed and placed into this field when you Tab out of the cell.

Just for safe measure, press the Tab key until you get to the “FilterActive” column. Make
sure that it is set to “No”. We don’t want a filter to be affecting our output at this time, or it
could lead to confusion.

=

After these steps are complete, click the Save button in the Configuration Tool toolbar.
Your new parameter will now be available in the Parameter Tool.

To run the function, drop the parameter into any display.

To build a test display, create an empty Analysis Window by dragging the icon from your
Display Builder onto your Desktop.

Display Builder = X

Data Displays lActiveX Controlsl Alignment]

Folder

T

| FFHS

.:.- ‘ 5 [val 55| -Label ‘
f | | -
EAH | [@ J

i

7) Now add the “Alphanumeric” display to the Analysis Window you just created using the

same drag-n-drop process; you should see the new display in the Analysis Window when

July 2020 Proprietary information of Curtiss Wright © 2020 62

R T IADS vesrrogemming

8)

9)

complete. The Alphanumeric is a very simple text display that will be easy to view the
equation output results.

Note: Use your cursor to hint on icons on the Display Builder to see which type of display
they are.

Ok, now for the parameter attachment to the display. Click on the Parameter Tool button in
the IADS Dashboard (bottom right hand corner of screen). The Parameter Tool dialog will
appear. The Parameter Tool dialog contains a list of all your available parameters in the
configuration. Now all we need to do is find our parameter.

Hl Display Builder ChangeDesktop Performance

Global Time Message Log Save Config Log Off
IADS Logs Configuration HideDashboard Help

In the top text field (quick find box), start typing the parameter name. I used the name
“TestMyParameter”, if you have done the same then type “TestMy”. You will notice that the
window at the bottom opens as soon as it finds your parameter. Keep typing until you see the
full parameter appears. Once it is visible, click on the parameter name and drag the parameter
into the display on the Analysis Window. As soon as you drop the parameter, data should
appear. This is the actual output of your function!

ParameterTool I.‘:' =l &J

TestMyFunction

Parameter
TestAscii3
TestAsciid
Testfscii5
TestMyFunction
TestSine

-
4| [>

ke

10) After your initial checkout is complete, you can move on to displays such as the Stripchart

that will show history and allow you to examine the data point by point for discrepancies.
Simply repeat the drag-n-drop process using the Stripchart icon (instead of the Analysis
Window icon) in the Display Builder (step 6). Make sure to save the configuration for later.

July 2020 Proprietary information of Curtiss Wright © 2020 63

T TADS #osrgemmns

3.4 Advanced Topics

3.4.1 Initialization and execution of your custom function

In this section, we will review the steps taken during initialization and execution of your
custom function. It is important to be aware how IADS creates your function, as well as how it
calls your function during both the “initialization stage” and the “computation stage”. This will
affect how your Compute function is designed. For reference, you can refer to the
SampleFunction2.h file in the SampleFunction project.

First, let’s examine the initialization stage of your function in general. Each and every
time a derived parameter is created that references your custom function, an instance of your
custom function object is created within the parameter’s computational engine. When the
parameter requires data, this object is then used to produce results as described by your specific
custom code. As a general rule, your custom function object is created each time a user drops a
derived parameter referencing your function into a display, enables and IAP parameter
referencing your function, or edits an equation in the ParameterDefaults table referencing your
function.

ConfigurationTool: Editing table ParameterDefaults

File Edit View Tools Window Help
FEd & e o sliyl T D82 TE = e [Nt =]
--J Automation || Param5ubGroup | DataSourceType | DataScurceArguement | UpdateRate

EJ Data 264 | Test Derived SampleFunctionVC SimpleFunction2("Text", 1,2) 100.0

DataGroups 265 Test Drerived SampleFunctionVC SimpleFunction2("Text", C,D) 26041666
Envelopes

ParameterDefaults
ParameterDefaultsState
: d ParametersbavedInDisplays

Extending this logic, each “instance” of your function called from within IADS is a
completely independent unit of code, akin to a C++ object with member variables and
corresponding code. In essence, each derived parameter is running a fully independent object.
Obviously, this is necessary if your function maintains states such as “last value” or perhaps a
specific “matrix” input file that is required and chosen by the user via the function’s input
arguments. In reality, your function can be called from many different derived parameters
simultaneously, each with their own unique set of input arguments, and possibly computing at
different times within the data. Because of this wide variety of possibilities, be aware that any
reference to “static” or “global” variables should be considered carefully. Global variables will
allow you to “share” information between multiple instances of your function, but you will have
to be very careful about the timing considerations. If you do decide to venture down this path,
please do post your scenario to the IADS Google Group. In general, avoid all use of global
variables and instead, use member variables within the class to hold any necessary state
information.

Now let’s examine the initialization stage in more detail. The function name (i.e. ProgID)
within the derived equation is used to call the “CoCreatelnstance” function in the Microsoft
COM libraries to create your object. Once your object is created within IADS, the
“FinalConstruct” method is called. In this method, you can put any initialization needed that is
independent of the input values to your function. This most likely would be limited to things
such as setting member variables to a known initial value.

July 2020 Proprietary information of Curtiss Wright © 2020 64

T TADS #osrgemmns

STDHETHOD{FinalConstruct){ wvoid
{

The ATL "goo" will call this upon construction of your class. It be called once per class creation.

<7 Every derived parameter that get's called and uses thi= function will create it's own "instance" of this

s clas=, =o if wou have 10 deriwved parameters calling the function, this function will be called 10 times, but

#/ each call will be a complete unigue copy of this class.

<+ If you want to create any "global" resources, that are shared between all the class instances, make sure you

<7 create a global static warisble (i.e. above this class definition =ee "ezample shared wariable"). Anvthing that wo
<< want kept separate per instance and not shared., declare in the member wariable selection below (zee CComBSTRE nStrin

/7 Thi= wariable i= for performance and initialization reasons a= vou will =s=ee below in the Compute function
<7 Make sure to add this member warisble to your class —» bool nWa=s=Initialized
nWasInitialized = false:

<7 Preparation for an example on how to output a "blob" data
< For now, we just set our Safedrray pointer to HULL. We'll do the allocation in the Compute function init section
mS& = NULL:

return 5 0K:

For instance, say you were building a function allowed a user to specify a number of data
points to “buffer” before computing a result. Of course, you will need a member variable in the
class to hold this buffer. During the FinalConstruct, you would set your member variable buffer
pointer to NULL, but you would not allocate the memory. At this point in the initialization, you
don’t have any of the argument values from the user’s equation, thus you don’t know how large
to allocate the buffer. In the next paragraph, we will discuss a way to solve this issue.

After your FinalConstruct function is called, IADS then calls the “Compute” function
within your object. The main purpose of this first call to your Compute function is to validate the
equation input variables. Understand that the custom function interface is flexible enough to
allow any number of input arguments, and each argument could be a different type (float, ascii,
blob, etc). It is at this exact time, the very first call to your Compute function, which you will
need to check the number and types of your input arguments. In fact, IADS will only listen to
your input argument error return codes on the first call to your function. Since we only want this
code to execute on the first call to the Compute function (and never again), a Boolean member
variable can be used to solve the problem. Simply add a member variable to your class and
initialize it to false in the FinalConstruct.

STOMETHOD(FinalConstruct){ woid)

<+ Thi= wariable iz for performance and initialization reasons as you will see below in the Compute function.
< Make sure to add thi= member wariable to yvour class —: bool mWasInitialized
mWasInitialized = false;

The secondary purpose of this first Compute function call is to give you an opportunity to
initialize any further variables (such as buffers, etc). Now, inside the Compute function you can
check the Boolean member variable’s value, perform your argument checks and buffer
initialization, then set the member variable so the code is not triggered again. See the example
code snippet below or refer to the SimpleFunction2.

July 2020 Proprietary information of Curtiss Wright © 2020 65

cURTI==" TADS vosrogenmn

STDHETHOD{ Compute){ ~*[in]*~ VARIANT* dataln. ~*[out]*- VARTANT* datalut)
{

Get the input arguments array
register VARIANT* argsdrray = (VARIANT=*)(dataln-:parray—-:pvData); - Could use SafedrraviccessData, but slover. .

The wery first call to this function is designated as an "initializion call®.
Check all parameter types here and then never do again. Adding this check to your code will speed up the performance
if { ImWasInitialized)

s First Step: We need to check how many argquments were passed into our function from the user

#/ Ezample, 1f the user creates a derived parameter with the function -: SampleFunction.SimpleFunctionZ{ "Format', Wal
#+ The argument count would be 3

int argCount = dataln—parray—rrgsabound-:cElements:

if (argCount I= 3) return DISP_E_BADPARAMCOUNT:

<7 Second Step: Check Types of each arg.. ... Either VI_RE8 (floating point walus), VI_BESTR (string walues) for now. ..

S In IADS, most every type of numerical argument is passed via an 8 byte floating point valus VI_RS.

s« If ywou're in doubt. use VT_RE. You can also bresk here in the code and ezamine the argsarravy[H].wt value to see the
Emample, if the user creates a derived parameter with the function —» SampleFunction.SimpleFunction?{ "Format', Val
#¢ The argument type for argl would be VT_BSTE and arg?- argd would he VT_RS

if { argsArray[0].wt |= VT_BSTR) return E_INVALIDARG:

if { argsArray[l].wt != VT_RB) return E IHVALIDARG:

if [argshrray[2].wt != VI_EB) return E_IHVALIDARG:

#+# The benefit of initializing here is that you can return an error code back to the user in the svent of failure
#¢ Here's a list of po==ible return wvalue= at thi= point:

<7 Ay E_FAIL or E_UHNEEXPECTED -: REeturns an "unspecified error" to the user

<7 By E_OUTOFMEHORY —» Returns an "out of nemory error" to the user

S0 2) E_TIHVALIDARG or DISP_E TYPEMISHMATCH —-: If one or more of the function argumnents were of incorrect type (i.e. nug
<« Dy DISF_E BADPARAMCOUNT —» If the number of function arguments were incorrect. returns an "invalid number of params

¢ Do whatever kind of alternatiwe initialization vou need to here asz well.
#s Examples: Connecting to a TCP socket, Serial Port. or any other type of external device

s Connecting to an sxternal database or any external file
s Freparing computational loockup tables or anything else to prepare for calculation
i Allocating memory buffers for this function

register int lengthOfBufferirg = (int)argsirray[l].dblVal:
miyBuffer = new float[lengthOfBufferirg]:

nWasInitialized = true;

Now that the initialization stage of your function is complete, [ADS will call your
function as data is required. This we will refer to as the “computation stage”. For each data value
needed, IADS will call your Compute function with all the necessary input data. Your custom
function will perform the processing and return a single value (the answer). This single answer
will then be returned to the derived parameter, buffered to limit redundant computation, and be
provided to a display (or other consumer).

The sample code in SampleFunction2.h will show you how to handle the various types of
input data (float, string, etc). It will also show you how to return these different types as your
custom function result. This will allow you to create custom functions to return data for almost
any situation. Again, if you need more help on this subject don’t hesitate to post a question to the
IADS Google group. For more advanced topics, such as returning multiple values from your
custom function, please continue to the next section.

July 2020 Proprietary information of Curtiss Wright © 2020 66

T TADS #osrgemmns

3.4.2 Returning multiple results from your custom function

One of the apparent limitations regarding the custom function technique described above
is that it seems unable to return multiple values. As we learned in the previous section, each
input argument that is supplied in the derived equation is sent into the Compute function, the
custom code uses these input values to calculate the result, and then the single result is returned
to IADS. Suppose you had a function with five input arguments, but instead of only outputting a
single result, it outputs five results. This problem can be solved in a simple fairly manner.

Ty ConfigurationTool: Editing table ParameterDefaults

File Edit View Tools Window Help

IIHHIM\.%%EI ‘‘‘‘‘‘ sl S| S [= | G [NoFiered =

+- | Automation ParameterDefaults | Parameter | ParamType ‘ ParamGroup | ParamSubGroup | ShortName | LongMame | Units | Color
- | Data 2258 |PD1 NyMultipleOutParam blob Group SubGroup

£| DataGroups 229
=] Envelopes

Bl ParameterDefaults M| memm

When a function needs to output multiple answers in a single computation, we can simply
output an “array” of answers. This array type output is referred to in IADS as a BLOB (binary
large object). Once the array/blob is output from your custom function, it can then be returned as
a blob type parameter and the individual values in the array can be extracted using another
derived function called “Decom”. In summary, we simply return an array of answers (however
many required by the individual function), and then we can extract each value in its own unique
derived parameter using the Decom function. Now, let’s go more into detail about this technique.

First of all, we will need to create an array to output our five results. [ADS requires that
this data array be allocated using Microsoft’s “SafeArray” mechanism, so we need to add a
pointer of type SAFEARRAY to our class. In this case, I used “mSA” as the member variable
name.

< Hember wariables of this custom function
CComBSTR mStringQutput
CCDmESTR mEerrStrlng
FE 1‘_"' '11-1'1'* T IJ.-.I.:
SAFEARRAY* nSaDouble;
bool mWasInitialized;

T
fendif ~» SIMPLEFUNCTIOHZ H_

Now we will need to allocate the memory for this array. Carrying on the initialization
discussion from the last section, we will perform the allocation in the Compute function within
the “first time only” portion of the function. To create the array, we will simply call the
SafeArrayCreateVector function with the type VT UI1 (byte) and the number of bytes required.

July 2020 Proprietary information of Curtiss Wright © 2020 67

T TADS #osrgemmns

if
{

ImWasInitialized

First Step: We need to check how many argumnents were passed into our function from the user

<7 Emanple, if the user creates a derived parameter with the function —-» SampleFunction. SimpleFunction?{ "Format"., Va
The argument count would be 3

EPa

<7 At thisz point in tims. all Blobs are "fized =ize", =o you'll nsed to determine a constant size in bytes and not ch
In this example., we will create a single blob output array that vill hold 2 float walues.

The first 4 byte entity is an unsigned integer which will hold the size of the blob (in bytes)

The remaining bytes will hald our 2 floating point numbers

<7 The length in bytes would be —: sizeof{ unzigned _ int32) + 2 * =izeof{ float)

const int cHumFloatsInBlob = 2

const int cBlobsSizelnBytes = sizeof(unsigned _ int32)-*HeaderSizelnBvtes#*- + cHumFloatsInBlob * =sizeof(float) %

How, let's allocate the SafeArray to contain our blob data
nSh = . :SafedrrayCreateVector({ VT_UIl, 0, cBlobsSizelnBytes):
if { mS54 == NULL)

< Ezample of returning a custom error string to Iads. See GetDescription below for further info
nErrorString = "SimpleFunction? failed to allocate memory for Blob output"
return E_OUTOFMEHORY ;

+

Now let’s focus in on the actual “size in bytes” required by the allocation. To do this
properly, we have to describe in more detail the actual structure of the blob. In a blob, the first 4
bytes of the array is a number specifying the total length of the blob (in bytes).

TotalSizeOfBlobinBytes IEI‘_ﬁes: 1-4
DataPortion Bytes: 65 -1

With this fact in mind, the equation to compute the total length of allocation needed is:
BlobSizeInBytes = sizeof(unsigned __ int32) + TotalSizeOfDataPortionInBytes
Or
BlobSizelnBytes = 4 + TotalSizeOfDataPortionInBytes
Or in our example using 5 floating point numbers (4 bytes per number)
BlobSizeInBytes = sizeof(unsigned __int32) + sizeof(float) * 5

At this point, you should have the return blob/array allocated, so now let’s examine how
to update our values in the array and return the results. First, we will need to access the array
pointer within the SAFEARRAY'. To do this, we simply call the SafeArrayAccessData function.

£ et a pointer to the safedrray data that we allocated in the "initialization =tage" abowe
BYTE#* =a;
c:SafeArraviAccessDatal mSA, (woid#*=)ésa)

Second, let’s set the blob size into the array. To do this, we simply cast the pointer
returned from the SafeArrayAccessData to a type unsigned int32* and then set the value to the
total number of bytes in the blob. The total number of bytes in our example is 24 (4 bytes for the
size field + 20 bytes for the 5 float values).

<« How access the first 4 byte integer =o we can inject the Blob =ize (in bytes).
unsigned _ i1nt3Z%* blobSizelnBytes = {unsigned _ int3Z2%*)=a;

<« Set the blob =ize in bytes
*hlobSizelInBytes = cBlobsSizelnBytes:

Now we can inject our computed results into the array. To do this, we need a pointer to
the type of variable we are going to store. We also need to make sure that the pointer starts at the
proper location in the array (past the BlobSizeInBytes field we just set above).

July 2020 Proprietary information of Curtiss Wright © 2020 68

T TADS #osrgemmns

<+ How let's inject the data into the remaining part of the BElob.
et a pointer to the pavload portion of the Blob (=tarting at S5th byte)
float*® payloadValuse=s = (float#*)(=a + =izecf(unsigned __ int32)):

< Set arg? and argd into the blob pavload (arrav)

pavloadValues[0] = returnValuesl:
payloadValues[1] = returnValus2:
pavloadValue=s[2] = returnValus=3l;
pavloadValues[3] = returnValuesd;
pavloadValues[4] = returnValuesh:

Instead of setting each value individually, you may want to simply call another function

to compute the results and pass in the output array pointer. You can then set the return values
from within that function and also keep all of your “calculation” code separate from the
“interface” code. This is a much cleaner approach overall.

< Likewise., i1f wou had vour own internal function to compute the results, wou could simply pass in the input args

and a reference to this array. Your function would simnply write the result directly into the array
< Malke sure you maintain & con=i=tent order to your outputs, becaus=e we'll have to extract them "one by one"
CalculatelyResult=({ arg?, arg3. payloadValuess)

later

After we are complete, this is how the blob layout will appear in memory (zero based

index):

24 Bytes: 0-3
ReturnValue1 Bytes: 4 -
ReturnValue2 Bytes: 8- 11
ReturnValue3 Bytes: 12-15
ReturnValued Bytes: 16 - 19
ReturnValues Bytes: 20 - 23

Once you have completed setting the return values into the array, it is now time to return
the blob to IADS. All we need to do here is call SafeArrayUnaccessData, set the dataOut->vt to

VT ARRAY|VT UII (i.e. an array of bytes), and assign the dataOut->parray variable to our
SafeArray member variable (mSA). To finish the function and return the value to IADS, we
simply return S OK from the Compute function.

SafedrravlnaccessDatal mSi)

dataCut—»wt = VI_ARRAY|VT _UI1:
datalut—:parray = mSi;
1

return 5 0K:

<« Finallw. =et the blob output type and reference the safedrray we just built

At this point in time, we can now test the function. To proceed, we will need to build a

derived equation to call your new function. We will also need to build derived functions to
extract the results from the blob. Compile your project and clean up any errors. When that is

done run IADS, and open up the Configuration Tool. Open the ParameterDefaults table and add

a parameter that calls your new function.

July 2020 Proprietary information of Curtiss Wright © 2020

69

R T IADS vesrrogemming

s ConfigurationTool: Editing table ParameterDefaults

File Edit View Tools Window Help

”gﬂ|[-~]‘ﬂ%|§'§|ﬂ,| ‘‘‘‘‘‘ —|zl Al| 12 '”@LL‘.>| Hﬂ—ﬂ"—f-@‘mmmﬁ\tered j
+-_| Automation ParameterDefaults | Parameter | ParamType ‘ ParamGroup | ParamSubGroup | Shortlame | LongMame | Units | Color
= Data 228 |PD1 MyMultipleOutParam blob Group SubGroup
| DataGroups | 209
=] Envelopes ==
B ParameterDeafaults [l e

Notice in the figure above that the “ParamType” column is set to “blob”. This is an
essential step that you can’t forget. If the ParamType is not set to “blob” for the derived
parameter, you will most likely get random return results or zero while attempting to extract the
5 embedded values.

Yt ConfigurationTool: Editing table ParameterDefaults

File Edit View Tools Window Help
EETCTEEY YN A) cac b tetsd AR i 3
+- | Automation DataSourceType | DataSourceArguement | UpdateRate | LLMegative
=] Data 228 | Derived SampleFunctionVC_SimpleFunction2("Text", 1,2) 1.0
&) DataGroups 299
= Envelopes [|
= 230
Seacmecocoui- | g

Now, scroll over to the DataSourceType column, and set it to “Derived”. In the
DataSourceArgument column, type an equation that calls your new function. To debug the
equation, you might want to start with a set of known input values (constants). After completing
the equation, save your configuration. We can now actually test the raw output of the custom
function.

At this time, if you wish to see the raw output of your function you can drop your newly
created derived parameter into the “ladsBusMessageDisplays.BlobViewer” display. If you
Right-click on the ActiveX Controls tab of the Display Builder in IADS, you can add the Blob
Viewer to your available displays list. Once that is complete, drag and drop the Blob Viewer
display into an Analysis Window. After the display appears, drop your new derived parameter
into the display. Notice that the Blob Viewer only shows the “payload” portion of your blob. The
size field in the blob has been stripped by IADS. This is to be expected, so don’t be alarmed.

Each 4 bytes in the display is a single 32-bit float return value. Bytes 0 .. 3 show the first
return value, bytes 4..7 show the second, and so on. Note that since our blob has a total of 5
return values, there is an extra 4-byte field at the end containing all CD values. This is an artifact
of the display and not actually in the blob itself. This issue should be fixed in a new version of
IADS soon, so you can safely ignore it for now.

July 2020 Proprietary information of Curtiss Wright © 2020 70

R T IADS vesrrogemming

*; Test Blob

This window has MOT been classified

& & - 2 [2S4S

This window has MOT been classified

Now that we know our blob is successful, we can continue on and actually extract each
individual value. When this step is complete, we can drop each individual return value into its
own display, or use these return values as an input into another derived equation. After
extraction, it will simply be “yet another derived parameter” and you can treat it like any other
parameter in the system.

*f; ConfigurationTool: Editing table ParameterDefaults
File Edit View Tools Window Help

” [= = | = | % By E | ------ | £ Zl | ” E g | ”ﬂ—-ﬂ-— - = | i |N0tF|Itered j
+- | Automation ParameterDefaults | Parameter | ParamType | ParamGroup | ParamSubGroup | ShortMame | LongMName | Units
=-__| Data 228 |PD1 MyMultipleOutP._. blob Group SubGroup

Q DataGroups | 229|PD1 ReturnValue1 float Group SubGroup

Q Envelopes | 230|PD1 ReturnValue2 float Group SubGroup

ﬂ E PD1 ReturnValue3 float Group SubGroup

=] ParameterDefaults!

%) ParametersSavedir | 232|PD1 ReturnValued float Group SubGroup
.| Display | 233 |PD1 ReturnValue5 float Group SubGroup
+_| Logs =2
4| Test hd
< > |<f <[=[=I["BlobDefinitions _} ParameterDefaults 4 Envelopes } DataGroups } UserValidationLog [4] [

To extract the individual values from the blob, we need to create one derived equation per
value. Each derived equation will use the “Decom” function to do the extraction work. Now,
return to the Configuration Tool and ParameterDefaults table to add 5 more derived parameters.
For each derived parameter, you must set the “ParamType” column to the type of the extracted
value. In our case, we packed 5 floating point values (32 bits each) into the blob, so the
ParamType must be set to “float”. If you skip this step you will again most likely get random
values or zero.

At this point we’re almost done. All we need to do is to write the extraction equations
using our blob parameter as the input. Scroll over to the DataSource column and set it to
“Derived”. In the DataSourceArguement column, add the following equation:

Decom(MyMultipleOutParam, 0, 4, 0, 31, 1, TRUE, FALSE)

The equation looks a little cryptic so, let’s go over the Decom function arguments:

July 2020 Proprietary information of Curtiss Wright © 2020 71

T TADS #osrgemmns

FuntionName: Decom

Arguments: 8

ArgumentList: InputDataParam, ByteOffset, NumBytes, StartBit, StopBit, DataTypeToReturn,
Signed, ReverseBytes

DataTypeToReturn -> { Integer=0, IEEEFloat=1, 1750Float=2, CharString=3, Array=4 }
Signed -> { False=0, True=1 } or just use TRUE/FALSE
ReverseBytes -> { False=0, True=1 }

Example Usage to extract a 4 byte IEEEFloat: Decom(MyIntParameter, 0, 4, 0, 31, 1, TRUE,
FALSE)

Basically, the Decom function is an all-purpose blob field extractor which can convert the
bit patterns extracted into any available type in IADS. With this in mind, let’s focus back on
extracting our values.

Decom(MyMultipleOutParam, 0, 4, 0, 31, 1, TRUE, FALSE)

The first argument of the Decom function is the blob source parameter. In this case, we
use the derived parameter that produces packed answers from our custom function. This should
be the same parameter we dropped into the Blob Viewer above.

The second argument is the “starting byte offset” of the item we wish to extract within
the blob. The byte offset is simply the number of bytes from the start of the payload section of
the blob (remember to now ignore the 4 byte size field). Since we are defining the equation for
the first return value, the starting byte offset will be zero (all the offsets are zero based in this
equation).

The third argument is the number of bytes to extract. In this case, the size of the return
value is 4 (4-byte floating point number). If you had chosen to pack double precision floating
point values (8 bytes each), this argument would be set to 8.

The fourth argument is the “starting bit offset” of the data within bytes identified in
arguments 2 and 3. In this case, we want all the bits so we simply specify bit 0. Likewise, the
fifth argument is the “ending bit offset” of the data identified in arguments 2 and 3. Again, we
want the full 32 bits, so we will specify 31.

The sixth argument is the actual “data type” that we want to return from the function. In
this case it is an IEEE float, so we will specify 1. The seventh and eighth arguments are simply
the signed flag and whether we need to reverse the bytes before data type conversion. We will
specify TRUE and FALSE respectively.

Now that we understand the Decom function in general, let’s simplify our task. Since all
of our return values are all of the exact same type and size, we can generalize our equations as
such:

Decom(MyMultipleOutParam, index*sizeof(returnValue), sizeof(returnValue), 0,
sizeof(returnValue)*8-1, DataType, TRUE, FALSE)

Or for our specific example
Decom(MyMultipleOutParam, index*4, 4, 0, 31, 1, TRUE, FALSE)
Where index goes from 0 to 4 (0 being our first item and 4 being our fifth item)

Using this generalization, we can easily write all of the functions needed:

July 2020 Proprietary information of Curtiss Wright © 2020 72

cURTI==" TADS vosrogenmn

ReturnValuel => Decom(MyMultipleOutParam, 0, 4, 0, 31, 1, TRUE, FALSE)
ReturnValue2 => Decom(MyMultipleOutParam, 4, 4, 0, 31, 1, TRUE, FALSE)
ReturnValue3 => Decom(MyMultipleOutParam, 8, 4, 0, 31, 1, TRUE, FALSE)
ReturnValue4 => Decom(MyMultipleOutParam, 12, 4, 0, 31, 1, TRUE, FALSE)
ReturnValue5 => Decom(MyMultipleOutParam, 16, 4, 0, 31, 1, TRUE, FALSE)

T ConfigurationTool: Editing table ParameterDefaults
File Edit View Tools Window Help

EEIEREY T = s = T T -]
+- | Automation 5 DataSourceType | DataSourceArguement UpdateRate ‘ LLMegative | LLPositive
=] Eata 228 | Derived SampleFunctionVC.SimpleFunction2({ "Text". 1.2) 1.0

=] DataGroups 229 | Derived Decom(MyMultipleQutParam, 0, 4, 0, 31, 1, TRUE, FALSE) 1.0

=] Envelopes 230 | Derived Decom(MyMultipleOutParam, 4, 4, 0, 31, 1, TRUE, FALSE) 1.0

B} ParameterDefaults 231 | Derived Decom

(
e { MyMultipleOutParam. 8, 4, 0, 31, 1, TRUE, FALSE) 10
7] ParameterDefaults! ||
gngﬁztz;s;;; 232 | Derived Decom(MyMutipleOutParam, 12, 4, 0, 31, 1, TRUE, FALSE) 10
233 | Derived Decom{ MyMultipleOutParam, 16, 4, 0, 31, 1, TRUE, FALSE 1.0
yMultipl

+ Display | ==-]

When you are finished writing all of the extraction equations, your ParameterDefaults
table should look similar to the above figure. Make sure to save your configuration upon
completion.

Now, all that is left is to drop the individual parameter into displays and test. If you have
any questions, please don’t hesitate to post them to the IADS Google group.

4. Custom Plugins

4.1 Creating a custom export plugin using C++ VS2015

The SampleExportPluginVS2005 demonstration project is available for download from
the Curtiss Wright IADS web site at the following location:
https://iads.symvionics.com/support/programming-examples/

It provides the necessary starter code for your new project. Once your plugin is complete
and registered on the IADS Client machine, it will appear on the Stripchart’s Data Export menu.

Note- on line 250 of the CSVFile.h in the exportdatagroup function : :OutputDebugString("Failed
to create parameter"); you must change to ::0OutputDebugString(L"Failed to create
parameter"”);The L is needed because of the project settings of Unicode vs multibyte characters.

It is important to build a new project rather than simply reusing the sample project
developed by SYMVIOINCS. The reason for this is that each export plugin project has its own
unique ID called a GUID that is placed in the Windows Registry. If more than one group uses
the sample project for their own, they cannot register on the same machine. Therefore, this
tutorial is presented as you the user are creating a new DLL project called MyExportPlugin.dll.
Further on we will show how to copy and paste code from the sample project so that you can
concentrate solely on your export code and not the interfacing between it and the outer IADS
Client shell. Remember to ensure that the bitness of your project and therefore the compiled
plugin is set to match the bitness of your IADS client (x64, x86).

July 2020 Proprietary information of Curtiss Wright © 2020 73

https://iads.symvionics.com/support/programming-examples/

R T IADS vesrrogemming

1) Open up VS2015 and Select “File -> New->Project”

M Start Page - Microsoft Visual Studio (Administrater)
File = Edit View Debug Team Tools Test Analyze Window Help

New P {3 Project. Ctrl+Shift+N

Open b % Web Site... Shift+Alt+M

E- T - -

July 2020 Proprietary information of Curtiss Wright © 2020 74

CURTISS -
WRIGHT

INDS.

IADS Programming
User Guide

2) Inthe New Project dialog that appears, choose the “Visual C++ > ATL” tier and click the
ATL Project option. At this point, please read the next step before you finish completing the
dialog. There are some important considerations when choosing the proper project name.

Mew Project

P Recent

4 |nstalled

B JavaScript
Visual F#
4 Visual C++
E Windows
ATL
CLR
General
MFC
Test
Win32
Cross Platform
Extensibility
SQL Server
Python
PowerShell
b TypeScript
Game

Ruiild Arreleratne

P Online

ey
- -:l
4 Templates =
b Visual C#
b Visual Basic

.MET Framework 4.5.2

ATL Project

~ Sort by: Default

Click here to go online and find templates.

?

X

Visual C++

Search Installed Templates (Ctrl+E) P~

Type: Visual C++
A project that uses the Active Template

Library

Mame: |MySamp|eExportP|ugin|

Location:

Solution name:

c\Projects

MySampleExportPlugin

- Browse...

Create directory for solution
[[] Create new Git repository

3) The project name you choose will become part of the display identifier name (aka ProgID,
see step 10). When it comes time to use your plugin in IADS, users will register your DLL
which automatically insert itself into the correct registry position and then be available from
the IADS Stripchart’s Right-click menu. The menu display name will come from your plugin
(more on this later). Plan on creating many plugins in one “project” (most common and
easier to manage the code). Choose a general project name like “NasaExportPlugins” or
“BA609ExportPlugins”. Think of the project name like a library name, and your plugins are

the books.

Now, in the fields at the bottom of the dialog, enter the project name, location, and the

solution name.

July 2020

Proprietary information of Curtiss Wright © 2020

75

R T IADS vesrrogemming

4) After pressing OK, the “ATL Project Wizard” dialog will appear as below.

ATL Project Wizard - MySampleExportPlugin ? x
Welcome to the ATL Project Wizard

T These are the current project settings:

Appication Settings # Dynamic-Link Library

Click Finish from any window to accept the current settings.

After you create the project, see the project's readme. txt file for information about the project
features and files that are generated.

[next>"]| Fnsh || cancel |

5) Click the Next button in the Wizard. On the new wizard page, ensure that the “Dynamic Link
Library (DLL)” is checked. Every plugin that runs in IADS is of type DLL. Press the
“Finish” button and the Wizard will create your project.

July 2020 Proprietary information of Curtiss Wright © 2020 76

CURTISS -
WRIGHT

INDS.

IADS Programming
User Guide

ATL Project Wizard - MySampleExportPlugin

El Application Settings

Application type:
(®) Dynamic-ink library {DLL)

Overview

Application Settings
() Service (EXE)

File type handler options:
File extension:

< Previous ext =

Support options:
[] Allow merging of proxy/stub code
[] support MFC
[[] support coM+ 1.0
[[] support component reg

[] security Development Lifecyde (SDL)
checks

July 2020

Proprietary information of Curtiss Wright © 2020

77

R T IADS vesrrogemming

6) In the this step we will setup a couple optional project-wide settings that make it easier to
work with provided IADS source code and eliminate warnings. Right-click on the project and
select properties from the menu. Click on the General tab and change the “Character Set”
option to “Use Multi-Byte Character Set”.

MySampleExportPlugin Property Pages 7 X
Configuration: | All Configurations ~ | Platform: | Active(Win32) ~ Configuration Manager...
4 Configuration Properties v General
General Target Platform Windows
Debugging Target Platform Version 8.1
VC++ Directories Output Directory S(SolutionDir)8(Configuration),
b C/Ces Intermediate Directory §{Configuration],
b Linker Target Name S(ProjectName)
I lani=2giool Target Extension il
P l=mmes Extensions to Delete on Clean *.cdfi*.cache*.obj;*.obj.enc.illc*.ipdb; *.iobj;* resources; " tlb;* ti;*.4
B LR Build Log File S(IntDir)3(M5BuildProjectMame).log
b LTS e o Platform Toolset Visual Studio 2015 (v140)
I+ Browse Information
b Ganld Events Enable Managed Incremental Build Mo
b Customn Build Step pgiErniectDefalt
b Code Analysis Configuration Type Dynamic Library (.dIl)
Use of MFC Use Standard Windows Libraries
Character Set Use Multi-Byte Character Set w
Commoen Language Runtime Suppert Mo Common Language Runtime Support
.MET Target Framework Version
Whole Program Optimization Mo Whole Program Optimization
Windows Store App Support No
Character Set
Tells the compiler to use the specified character set; aids in localization issues.
< >
Cancel Apply

7) Again, from the Project/Properties menu select C/C++, Preprocessor and add the following
definition “ CRT _SECURE NO WARNINGS”

July 2020 Proprietary information of Curtiss Wright © 2020 78

CURTISS -
WRIGHT

INDS.

IADS Programming
User Guide

Configuration: | All Configurations

4 Configuration Properties
General
Debugging
WC++ Directories
C/C++
General
Optimization

[N

Preprocessor
Code Generation
Language
Precompiled Headers
Output Files
Browse Information
Advanced
All Options
Command Line
Linker
Manifest Tool
Resources
MIDL
XML Document Generator
Browse Information
Build Events
Custom Build Step
Code Analysis

v T T T TV T v W

~ | Platform: | %64

Preprocessor Definitions

Undefine Preprocessor Definitions
Undefine All Preprocessor Definitions
Ignere Standard Include Paths
Preprocess to a File

Preprocess Suppress Line Numbers
Keep Comments

~

_WINDOWS; <different options>

Mo
Mo
Mo
Ne
Mo

>

Configuration Manager...

Preprocessor Definitions

_WINDOWS
_CRT_SECURE_NO_WARNINGS|
«different options>

Evaluated value:

_WINDOWS

| || _CRT_SECURE_NO_WARNINGS
<different options>

8) Now we will add our actual export object. Go to the “Class View” tab in Visual Studio’s
workspace and right-click on the project name. Choose Add > Class. At this point we are
adding our first export plugin

July 2020

Proprietary information of Curtiss Wright © 2020

79

CURTISS -
WRIGHT

IADS Programming
User Guide

& | e B

Build

Rebuild

Clean

View

Analyze

Project Only

Retarget SDK Version
Profile Guided Optimization
Project Dependencies...
Project Build Order...

Build Custornizations...
Add

Class Wizard...

Add Reference...

Add Connected Service...
Manage MuGet Packages...
Set as StartUp Project
Debug

Save MySampleExportPlugin
Sort Alphabetically

Sort By Object Type

Sort By Object Access
Group By Object Type
Properties

Ctrl=Shift=X

Cirl+5

A+ Enter

hPS

e Class...
s Eesource...

prer | Class View | Resource View

= 0

ect Properties -

July 2020

Proprietary information of Curtiss Wright © 2020

80

CURTISS -
WRIGHT

INDS.

IADS Programming
User Guide

9) Upon adding a new class you will be presented with a dialog. Click the ATL tier and ATL

Simple Object as shown below. When that is complete, press the Add button.

Add Class - MySampleExportPlugin

4 |nstalled

4 Visual C++
CLR

Ce++
MFC

b Online

Mame:

Location:

r++
J
A+

om?

L

@i ATL COM+ 1.0 Component

| Sort by:

Default

ATL Simple Object

ATL Control

ATL OLEDE Consumer

ATL Dialog

Add ATL Support To MFC

ATL Property Page

ATL OLEDB Provider

ATL Active Server Page Component

Click here to go enline and find

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Search Installed Templates (Ctri+E} 2 =

? x

Type: Visual C++

Adds a simple Active Template Library
object

Browse...

10) On the first tab, enter the name of your display in the “Short Name” field. The wizard will fill
out the rest of the tab automatically. For this example, I used “CSVFile” as the short name.
Notice that CSVFile.h and CSVFile.cpp will be created by the wizard and will be the source
code files that you will edit with your own export code. The name entered will be combined
with your project name and will form the final “Progld” as shown. Press “Next” to continue.
The ProgID is not populated automatically using in VS2015. You must input this manually.
It should be in the form ProjectName.ClassName or in this case

MySampleExportPlugin.CSVFile.

ATL Simple Object Wizard - MySampleExportPlugin 7 X
ﬁ Welcome to the ATL Simple Object Wizard
C++
Names
Filz Type Options Short name: .h file:
Options [EsvFie %] [csvFie.h [[ee]
Class: .cpp file:
[ccsvFie | [CSVFile.cop [[ee]
coM
Codazs: Type:
[csvFie | [CSVFile Class |
Interface: ProgID:
[1csvFile | [MySampleExportPlugin. C5VFile |
Mext > ‘ | Finish || Cancel
July 2020 Proprietary information of Curtiss Wright © 2020

81

CURTISS -
WRIGHT I/\DS®

IADS Programming
User Guide

11) On the next tab (“Options”), leave everything as default (Apartment, Dual, Yes, and no other
options checked). Any other dialogue boxes can be left in default.

ATL Simple Object Wizard - MySampleExportPlugin

ﬁ Options

O only

Click here for unsupported Smart Device Options

< Previous

Names Threading model: Interface:
File Type Options () 5ingle: (@) Dual
. (@) Apartment () Custom
Options B -
() Both
":" Free Suppart:
() Neytral ["] 15upportErrorinfo
Aggregation: [connection points
@ Yes
O lo [10bjectwithsite (IE object suppart)

Finish | | Cancel

The remaining options are basically “COM speak”. More information about these options
can be found in the Microsoft documentation. At this point your project can compile and
register your DLL successfully, although it does not do anything yet.

July 2020 Proprietary information of Curtiss Wright © 2020

82

R T IADS vesrrogemming

4.1.1 Adding IADS Interface files

The next step is to add the two required IADS interface files, “iads.idl, and
“IadsTime.idl”. These files provide the interface between your export plugin and the running
IADS Client. They can be added anywhere in your project files but I recommend creating a new
folder called “COM?” to put them into it. Do not get the .idl files from the Curtiss Wright IADS
website in the folder called iadscomhelperfunction. These .idls are old and do not have all of the
functions necessary to the project. Instead use the. idls provided with the tutorial project. Then
you can create a filter within your project to add the two existing idls.

Ml Solution Explorer > 33
- @ o-sdbm £
L
1_ Search Solution Explorer (Ctrl+;) o)
T B Solution 'MySampleExportPlugin’ (2 projects)
kA MySampleExportPlugin
|':,| Build Erences
Rebuild ernal Dependencies
nerated Files
Clean .
MySampleExportPlugin_i.c
View 'Y .
yaampleExportPlugin_i.h
Analyze ¥ ader Files
Project Only ¥ |CSVFile.h
Retarget SDK Version Ll
Resource.h
Scope to This e tdafih
Mew Solution Explorer View targetver.h
Profile Guided Optimization R
_ _ C5VFile.rgs
Build Dependencies " IMySampleExportPlugin.rc
Add ¥ 1 Newltem.. Ctrl+Shift+A
g Class Wizard... Ctrl+Shift+X %9 Existing ltem... Shift+Alt+ A
B Manage NuGet Packages... #- Mew Filter
[targetverh
= LI
1 Mew ltem... Ctrl+Shift+A Add ’
0 Existing ltem... Shift+ Alt+ A B* Class Wizard... Ctrl+5Shift+X
#5 MNew Filter Scope to This
s Class... Mew Solution Explorer View
b
""?3 Resource... JZE Cut Ctrl+X
; I Copy Ctrl+C
b | X Delete Del
Rename
i E\ A Properties Alt+Enter

July 2020 Proprietary information of Curtiss Wright © 2020 83

CURTISS -
WRIGHT

INDS.

IADS Programming
User Guide

ES] Add Existing Itermn - MySampleExportPlugin

« v A « MySampleExportPlugin » MySampleExportPlugin » COM v Search COM

o

Organize » New folder == »

=| Pictures (] Mame Date modified Type

MyActiveXContr S lads.idl

=] ladsTime.idl

3/19/2014 2:04 PM

6/11/2013 1:08 PM

Interface Definitio...
MyCFunctions Interface Definitio...
opencv-haar-cla

positive_images
E] Microsoft Visual 5
#@ OneDrive

[This PC

[Desktop

t:"| Documents
; Downloads

J‘! Music

&= Pictures

B Videos

Gm Local Disk ()

) CD Drive (F)
W

Famems | v| All Files (%)

Add

39T KB
12 KB

Cancel

Now we need to compile the newly added IDL files to generate the output files needed in the
export source code we will be editing. IDL files are compiled by a program called “MIDL”
(Microsoft’s IDL compiler). This is accomplished by setting up the configuration of each file in

the following manner:
1) Right-click on the “iads.idl” file and select Properties.
2) Click on the MIDL tier in the dialog and select the Output option.

3) Change the default names from MyExportPlugin to the name of the IDL file as shown in the

following example.
4) Repeat this step for the “ladsTime.idl file”.

July 2020 Proprietary information of Curtiss Wright © 2020

84

CURTISS -
WRIGHT

IADS Programming

User Guide

®
lads.id| Property Pages 7 *
Configuration: | All Configurations ~ | Platform: | x64 ~ Configuration Manager...
4 Configuration Properties Qutput Directory
General Metadata File
4 MIDL Header File lads.h

General DllData File

SRR IID File lads_i.c

Advanc.ed Proxy File lads_p.c

AlCphion= Generate Type Library Yes

Command Line $(IntDir)/lads.tlb =

Generate Client Stub Files
Generate Server Stub Files
Client Stub File

Server Stub File

Type Library Format

Type Library
Specifies the name of the type library file (/tlb filename)

Cancel Apply

5) The “iads.idl” file includes the “ladsTime.idl file” so you may need to set the path for the
MIDL compiler as shown:

lads.idl Property Pages ? X
Configuration: | All Cenfigurations v Platform: |x64 ~| | Configuration Manager...
4 Configuration Properties Preprocesser Definitions <different options>
[Aciions incude Dvstories——————————— PACNOM o PlgioCOM%(AdaitionalncudeDictories [~
4 MIDL Additional Metadata Directories
General Enable Windows Runtime
Output Ignore Standard Include Path No
Advanced MKkTypLib Compatible No
All Options Warning Level |
Crmmrdilie Treat Warnings as Errors No
Suppress Startup Banner Yes (/nologe)
C Compiler Char Type Signed (/char signed)
Target Environment Microseft Windews 64-bit on x64 (/env x64)
Generate Stubless Proxies Yes (/icf)

Suppress Compiler Warnings
Application Configuration Mode
Locale ID

Additional Include Directories
Specifies one or more directories to add to the include path (/I[path])

Cancel Apply

July 2020

Proprietary information of Curtiss Wright © 2020

85

CURTISS -
WRIGHT

IADS Programming
User Guide

INDS.

6) Make sure and compile each file individually to run MIDL and create the needed output files:

I [= | C\Projects\MySampleExportPlugin\MySampleExportPlugin — O X
Home Share View 0
« v P <« MySampleExportPlugin > MySampleExportPlugin v O Search MySampleExportPlugin o
& Downloads # * Name - Date modified Type Size “
[£ Documents &+ CSVFile.cpp 2/16/2017 304 PM C++ Source 1KB
= Pictures * [n] CSVFile.h 2/ C/C++ Header 2 KB
MyActiveXContr @ CSVFilergs 2 Registration Script 1EB
MyCFunctions 2] dlldata.c C Source 1KB
& diimain.cpp 2/ C++ Source 1KE
opency-haar-cla 1] dilmain.h 2/16/2017 255 PM C/C++ Header 1KB
positive_images (1] lads.h 2/16/2017 304 PM C/C++ Header 1372 KB
& OneDrive lE] lads_i.c 2/16/2017 3:04 PM C Source 15 KB
] lads_p.c 21 7 3:04 PM C Source 1,679 KB
B3 This PC 1] ladsTime.h 2/16/2017 304PM C/C++ Header 18 KB
[Desktop 2] ladsTime_i.c 2/16/2017 304 PM C Source 2 KB
@ Documents 151 ladsTime_p.c 2A16/2017 3:04 PM C Source 40 KB
4L Downloads [] MySampleExportPlugin.aps 2/16/2017 258 PM APSFile S KB
D Music] MySampleExportPlugin.cpp 2M16/2017 255 PM C++ Source 2KB
B =] MySampleExportPlugin.def 2/16/20 Export Definition F... 1KB
| Pictures
] =] MySampleExportPlugin.idl 2/16/2017 3:04 PM Interface Definitio... TKE
B Videos MySampleExportPlugin.re 2/16/2017 2:58 PM Resource Script 7KB
i Local Disk (C) “&) MySampleExportPlugin.rgs 2/16/2017 255 PM Registration Script 1KB .
Mitems 6 iterns selected 3.04 MB =

Note: iads_p.c and iadstime p.c and are created but are not used.

7) Add the MIDL generate files to the “stdafx.c” source code file. Adding these files here will
allow access to the needed global variables in your export source code. Once complete,
rebuild to ensure no errors.

stdaf.cpp™ R X EaSUSIIN

(%] MySarmpleExportPlugin - (Gloh
1 -1// stdafx.cpp : socurce file that include
2 £ MySampleExportPlugin.pch will be the
3 f/f stdafx.obj will contain the pre-compi
4
5 Sl#include "stdafx.h”
B
7 kr'include "Iads.h™
8 #include "Iads_i.c™
9
18
11 #include "IadsTime.h™
12 #include "IadsTime_3i.c"
13

July 2020 Proprietary information of Curtiss Wright © 2020 86

R T IADS vesrrogemming

8) Add the IADS IDL interface file includes into your IDL file and change your export interface
to derive from IDataExportPlugin instead of IDispatch that was generated by the wizard.

import "IadsTime.idl";

import "Iads.idl"

and

interface ICSVFile : IDataExportPlugin{

[l MySampleExportPlugin - (Global Scope) -
7 import “oaidl.idl";
3 import "ocidl.idl";
=]
16 //ADD THIS IADS COM INTERFACES
11 import "IadsTime.idl";
12 import "Iads.idl"
13 [
14 object,
15 uuid(A74CAECC-AR2C-473B-9B2F-B49C716B59384),
16 dual,
17 nonextensible,
18 poeinter_default(unique)
19]
28 -1/ /original
21 //interface ICSVFile : IDispatch{
22
23 //modified
24 —linterface ICSVFile : IDataExportPlugin{
25 il
26 =11
27 uuid(C2631335-368C-4986-9DE5-26D397654334),

9) Just as in step 4 you may need to set the MIDL path property so that your IDL knows to the
location of the “iads.id]” and ITadsTime.idl files.

MySampleExportPlugin Property Pages ? X
Configuration: | All Configurations | Platform: [x64 ~ | Configuration Manager...
4 Configuration Properties Preprocessor Definitions <different options>
Sener e < P Plugi COM K AddtonainchudeDirectores)
Debugging Additional Metadata Directories
VC++ Directories Enable Windows Runtime
boC/Ces Ignere Standard Include Path Mo
b Linker MiTypLib Compatible No
b Manifest Taol Warning Level]
b Resources Treat Warnings as Errors No
ZRIDE Suppress Startup Banner Ves (fnologo)
gz::’uat' C Compiler Char Type Signed (/char signed)
el Target Environment Microsoft Windows 64-bit on x64 (/env x54)
pr— Generate Stubless Proxies Yes (/Oicf)
Tt Suppress Compiler Warnings
» XML Document Generator Application Configuration Mede

b Browse Information Locale ID
b Build Events
b Custom Build Step

b Code Analysis

Additional Include Directories
Specifies one or more directories to add to the include path (/I[path])

Cancel Apply

10) At this point all the necessary external files have been added to your project, however it will
not compile until we add the routines that are expected by the IDataExportPlugin interface.

July 2020 Proprietary information of Curtiss Wright © 2020 87

cURTI==" TADS vosrogenmn

4.1.2 Adding IDataExportPlugin code and your export code

In this section we will add the required routines to that comprise the IDataExportPlugin
interface, including the PerformDataExport routine which is where the entirety of your export
code will reside.

1) The first step is to cut and paste the IDataExportPlugin interface code from the sample
project. The source to copy is in the “CSVFiles.h” file. Cut and Paste the following routines
without modification: OnConnection, OnDisconnection, PerformDataExport,
ExportSelectedDisplay, ExportDataForSingleParameter, and ExportDataGroup into the
CSVFile.h within your project. These routines already include most of the source code you
will need to access the running IADS Client for necessary parameter information. All you
will need to do is replace the actual code that exports to a CSV File with your own output file
type, such as HDF.

MySampleExportPlugin.id stdafx.cpp CSVFileh™ + X
[MySampleExportPlugin - #z CCSVFile = @ OnConnection(lApplication * Application)
56 mIads = Application; // CComPtr class performs AddRef automatically
57
58 /f Plug ourself into the Iads Export Plugin branch
59 CComPtr<IPlugins> plugins;
2] mIads->get_Plugins(&plugins);
61 if (!plugins.p) return E_FAIL;
62
63 CComPtr<IExternalPlugin> pP;
64 this->QueryInterface(IID IExternalPlugin, (void**)&pP); _ASSERT(pP.p);
65
66 plugins->Add(L"CSVFile Example Export Plugin”, iadsDataExportPlugin, pP, NULL/*CatagoryNotUsedAtThisPoint*/);|
67
68 return 5_0K;
69
70] STDMETHOD(OnDisconnection) (void)
71 {
72 /) Do anv dimmediate cleanun here. hut mainlv in the Finalhestruct function

2) Modify the string argument in the plugins-add call. This will become the actual display name
that appears in Iads on the Right-click menu.

3) Next add the “mlads” member variable to the public section of your class in CSVFile.h.

MySampleExportPlugin.idl stdafr.cpp
[MySampleExportPlugin = ¥z CCSVFile -

374 = for (register int z = 8; z<numParamsCreated; z++)

375 {

376 params[z].Release();

377 1

378 delete[] params;

379

380 fflush(fp);

381 fclose(fp);

382

383 return 5_0K;

384 }

385

386 public:

387 CComPtr<IApplication> mIads;l

388

389

EEL i

391

302 OBIECT_ENTRY_AUTO(_ uuidef(CSVFile), CCSVFile)

393

July 2020 Proprietary information of Curtiss Wright © 2020 88

R T IADS vesrrogemming

4) Finally add the IDataExportPlugin and the IExternalPlugin COM_INTERFACE ENTRY
entries to the CSVFile.h header file’s COM Map as shown

MySampleExportPlugin.id stdafx.cpp CSVFile.h® # X
& MySampleExportPlugin -~ ¥z CCSVFile
26 public:
27 - CCSVFile()
28 {
29 1
38
31 DECLARE_REGISTRY RESOURCEID(IDR_CSVFILE)
32
33
34 [EIBEGIN_COM MAP(CCSVFile)
35 COM_INTERFACE_ENTRY(ICSVFile)
36 COM_INTERFACE_ENTRY(IDispatch)
37 COM_TINTERFACE_ENTRY(IDataExportPlugin}
38 COM_INTERFACE_ENTRY(IExternalPlugin)
39 END_COM_MAP()
42
41
42

5) At this point your project should compile without errors or warnings.

July 2020 Proprietary information of Curtiss Wright © 2020 89

R T IADS vesrrogemming

4.1.3 Make your DLL self-register for use in IADS

1) In order for your export plugin to be shown in the Stripchart’s Data Export menu, registration
code must be added to your object’s registration script. The easiest way to do this is to cut
and paste the code from the sample project’s CSVFile.rgs into the CSVFile.rgs file from your
solution and change the name of the Progld to the new project’s Progld which should have
stayed constant throughout the program, as shown here:

W MySampleExpertPlugin.idi stdax.cpp CSVFileh® S [CammEs s < [53
Typelib = 5 {LZ63L335-366C BBA3IAF T . -

23 Version = 5 '1.0" T @ o-sa@ o fE|
24 , 1 Search Solution Explorer (Ctrl+;) P
25
2%} T Solution 'MySampleExportPlugin’ (2 projects) A
27 4[4 MySampleExportPlugin
28 HKEY_LOCAL_MACHINE b =M References
23 b G External Dependencies
= i ORI H 4[] Genersted Files
j; { — e T o4+ MySampleExportPlugin_i.c

emove fonics, Inc.

- : VY 2 o[MySampleExportPlugin ih
. T 4 5] Header Files
35 ¥ b [CSVFileh
36 NoRemove ClientWorkstation b dilmain.h
37 3 Resource.h
38 NoRemove Addins b stdafeh
s t . . [targetverh
42 ForceRemove SampleExportPluginV/s2e5.CsVFiles " COM
42 val Friendlylame = s 'Example Plugin Object’ b B G5
4 val LoadBehavior = d 3 > B ledsTimeid
44 3 4 ;] Resource Files
e 3 Ty CSVFilergs
46 } [MySampleExportPlugin.rc
47 } s MySampleExportPlugin.rgs
48 1 4] Source Files
a9
ol [i ++ CSVFile.cpp
2 b s dlimain.cpp

2) After building the solution, you can use regedit to verify that the registration code worked
properly by putting the Progld into the HKEY LOCAL MACHINE/Symvionics,
Inc./TADS/ClientWorkstation/Addins registry hive.

;" Registry Editor |Z| |E|rg|
File Edit Wiew Favorites Help

(23 Program Groups A MName Type Data
(0 Registeredappiications [3b]¢Default) REG_SZ {value not set)
(3 schlumberger [2B)FriendlyMame REG_S7 My Export Plugin Object
(3 Seapine Software [88]LoadBehavior REG_DWORD 0x0000000% (2)
D Secure
(21 sigmaTel
(23 somic
(23 sourceCodeControlProvider
7] D Symantec
= D Symwonlcs, Inc.

= D nddlns
-2 ladsaddinTools, StripChartToolBox:
23 ladsTestPointaddIns Caloulateberived
L1 ladsTestPointaddIns LinearRegression
3 IadsTestPolntndd “inde alibr ation

@ SampleExportPIungSZDDS CSVFiles
[_1 Displays
[Z 1adscustomers
[Z11 1adsTpp
(1 PostFlightDataserver
(23 wWindows 3.1 Migration Stakus
{23 5vSTEM
{Z1 HKEY_USERS

([HKEY_CURRENT_CONFIG 8
| (£

|

lMy ComputeriHKEY _LOCAL_MACHINE\SOFTWARE! Svmvionics, Inc.\TADS) ClientWarkstationAddins MyExportPlugin, C5%File

July 2020 Proprietary information of Curtiss Wright © 2020 90

R T IADS vesrrogemming

3) Finally, you can run TADS (requires version 7 or greater) and verify that MyExportPlugin
was added to the Stripchart Data Export menu as shown here.

Before you can run Iads in debug mode to verify your plugin was added to the program
please complete the next section, 5.1.4.

T Aw.0-TueApr2714:13:352010@pat3000dc

This window has NOT been classified

=l 20§ e Eaas T = w1 2 5[10 20501

FiveHundredFiveHz parm1
o o =[] 4l o e =4 4]
B3 1] 24 1] 50 100

Print
Save Image

Label M
Crigntation

Tirne:

Grids

Display

v T T

Log Selections
Log Data ¥
[rata Expart Export b CSW File »

Five Export ko Excel 4
Compute 4

Data Group Compute 3

Export ko Bosing HDF - »

Size: 3
Order 3

My Export Plugin Selected Displays
Example Export Plugin ¥

Delete 3 ExportDefaultsyxx
. MatlabExport
Go To Definition 4)
PluginTest
Debug Parameter 3 4
Properties. .. ZI

-8

This window has NOT been classified

July 2020 Proprietary information of Curtiss Wright © 2020 91

R T IADS vesrrogemming

4.1.4 Debugging your new plugin in IADS

1) Place a break point in your “PerformDataExport” method for testing. Remember this
function is within CSVFile.h.

CSVFile.rgs® MySampleExportPlugin.idl stdafx.cpp CSVFileh™ 1 X
% MySampleExportPlugin - #3 CCSVFile - @ PeformDataExport(IDataDisplay * SelectedDisplay, §
75 return s_UK;
76 1
77
78 = // PerformDataExport - This is where all your export code needs to go. You *must® define and use this function
79 // name to perform your export, or you will get compile errors. This function implements the IDataExport interface
a8 // in which the Iads client calls to trigger the export action.
81 = STDMETHOD(PerformDataExport) (IDataDisplay* SelectedDisplay, BSTR DataGroupName)
82
[] 83 | if (!selectedDisplay && !DataGrouplame) return E_POINTER;
a4
35 // CComPtr will Release the objects once this function looses scope so no need to do that yourself
86 CComPtr<IladsTime> startTime, endTime;
a7
38 // Get the selected time range from the display
39 SelectedDisplay->GetSelectedTimeRange (&startTime, ZendTime);
98 if (!startTime.p || !endTime.p) return E_POINTER;
91
a2 = If the Data GroupName is NULL, then the user selected "Data Export->Your Plugin->Selected Displavs”.

In Visual Studio, select Project > Properties drop down menu. In the “Debugging” tier, pick
“lads.exe” as your “Command”. It is in your “C:\Program Files\lads\ClientWorkstation”
directory. Build your project and click the “Go” command. IADS will start. If you have built
a x64 plugin you’re the iads client will be in C:\Program
Files\IADS\ClientWorkstation\iads.exe. If you compiled a x86 version you will have to use
the 32 bit ads client which is located within C:\Program Files
(x86)\IADS\ClientWorkstation\iads.exe.

MySampleExportPlugin Property Pages ? *
Configuration: | All Configurations ~ | Platform: | Active(xfd) ~ Configuration Manager...
4 Configuration Properties Debugger to launch:
Genetal Local Windows Debugger ~
Debugging
VC++ Directories . - .
b C/C Command C\Program Files\IADS\ClientWorkstation\lads.exe
JC++
. Cemmand Arguments
b linker Working Direct $(ProjectDi
b Manifest Tool orking Directory (ProjectDir)
Attach Mo
I» Resources
b MIDL Debugger Type Auto
I XML Document Generator Environment
I Browse Information Merge Environment Yes
b Build Events 5QL Debugging No
I+ Custom Build Step Amp Default Accelerator
I Code Analysis
Command
The debug command to execute.
£ >
Concel | ol

July 2020 Proprietary information of Curtiss Wright © 2020 92

T TADS #osrgemmns

2) Right-click on the Stripchart and select the Properties option and then the Data Export
option. Select “My Export Plugin” to hit your breakpoint in your code in the
“PerformDataExport routine.

5. Application Programming Interfaces

5.1 TADS Configuration File API

The IADS Configuration data base is an ASCII file that is used by all the IADS software
components for setup, communication, and archiving of both system and user generated meta-
data. It is used and manipulated by both the IADS Server (CDS) and the IADS Client display
workstation (the Client).

This document provides the interface specification necessary in order to manipulate the
Configuration file using the IADS Configuration File Application Programmers Interface (API).
This API was developed to allow outside agencies a programmatic interface in order to create
and manipulate the IADS Configuration database file in a non-real time environment.

This document will cover the contents and structure of the IADS Configuration database
file. In addition, a general discussion of the API’s Parameter Defaults table and the Event
Marker table along with a discussion of the general SQL query interface will be included.

IADS provides a Component Object Model (COM) programming Application
Programmers Interface (API) Dynamic Link Library (DLL) interface to manipulate an IADS
Configuration file. This API provides methods using two different techniques; a Collection
based interface for frequently used tables and a general-purpose SQL interface for complete
access to all internal tables (See Appendix A for list of tables).

The COM DLL and test project are available for download on the Curtiss Wright IADS
website at: https://iads.symvionics.com/support/programming-examples/

5.1.1 Configuration Interface

The Configuration interface provides all the methods needed to manipulate the
Configuration file. This is the API starting-point for all Collection interfaces that are described
in section 5.1.2. Following is a table of the methods available:

Method Return Argument Description
Open In BSTR Open an existing configuration file with
create backup option
Create In BSTR Create a new configuration file with open
option
In VARIANT BOOL Set to true to Open the file after creation
Save None VOID Commit and save changes from open
configuration file
Close In VARIANT BOOL Close configuration file with save option
VersionFromFile In BSTR Configuration file name and path
Out BSTR* Version number
Version Out int* return version of currently opened
configuration file, (-1) indicates no
version has been set yet
Version In int put version of configuration file to create
OpenMessageLog In BSTR Log error messages to a file

July 2020 Proprietary information of Curtiss Wright © 2020 93

https://iads.symvionics.com/support/programming-examples/

T TADS #osrgemmns

In VARIANT BOOL True to delete existing log
ParameterSets Out IParameterSets** Get the ParameterSets collection
ParameterDefaults Out IParameterDefaults** Get the ParameterDefaults collection
Events Out IEvents** Get the Events collection
Thresholds Out IThresholds** Get the Thresholds collection
Testpoints Out ITestpoints** Get the Testpoints collection
Selections Out ISelections** Get the Selections collection
PlannedTestPoints Out IPlannedTestPoints** Get the Planned Test Points collection
Query In BSTR Query interface. Keywords are: Select,
Update, Delete, and Create. Returns an
array of BSTR results if applicable
Out VARIANT* Array of query results

5.1.2 Collection Interfaces

Seven collection interfaces are provided as a layer on top of the SQL engine due to their
frequent use. They are the ParameterSets, ParameterDefaults, EventMarkers, Selections,
Thresholds, Testpoints and PlannedTestPoints.

Appendix B has the value for IADS defined data types and enumerations. Following is a
description of each of the collection interfaces

ParameterSets Collection

IADS allows multiple Parameter Sets to be defined and enabled for processing. The
ParameterSets collection is used to return ParameterSet Item which in turn contains a
ParameterDefaults collection (see the “ParameterDefaults Collection* section below) . Following
are the functions in the ParameterSets collection:

Method Return Arguments Description
Count Out long* Gets the number of [ParameterSet Items within the
collection.
Add In BSTR Add a new [ParameterSet Item to this collection. Add a
ParameterSet by name
In BSTR The group name of the [ParameterSet Item to add to
this collection.
In VARIANT BOOL The active flag of the [ParameterSet Item to add to this
Out IParameterSet** Return value reference to the newly added
[ParameterSet Item.
Remove In VARIANT Remove [ParameterSet object by index or name from

this collection

RemoveAll None VOID Remove all [ParameterSet Items from this collection.
Item In VARIANT Return an [ParameterSet Item by name (string) or
index number (0..Count). IndexOrName
Out IParameterSet** Return value, reference to the specified IParameterSet

Item. Returns a Set object by name (string) or index
number (0..Count)
SaveTable None VOID Save changes to this Collection

July 2020 Proprietary information of Curtiss Wright © 2020 94

CURTISS -
WRIGHT

INDS.

IADS Programming
User Guide

ParameterSet Item

The Parameter Set item contains the Set name, the Group name, and an IsActive boolean

if the set is active in IADS. It also contains the ParameterDefaults collection for further

processing of Parameter information.

Method Return Arguments Description

SetName Out BSTR* Get the Parameter Set name
SetName In BSTR Set the Parameter Set Name
Group Out BSTR* Get Parameter Group name
Group In BSTR Set Parameter Group name
IsActive Out VARIANT BOOL* Get Parameter Set Active
IsActive In VARIANT BOOL Set Parameter Set is active
ParameterDefaults Out IParameterDefaults* Get Parameter Defaults collection

ParameterDefaults Collection

The ParameterDefaults Collection holds all the available Parameter Items. It returns
ParameterDefault Item which contains all the available properties for each parameter.

Method Return Arguments Description
Count Out long* Gets the number of [ParameterDefault items within the
collection.
Add In BSTR Add a new IParameterDefault Item to this collection, this is
the Parameter Name
In TadsDataType This is the inherent type of the parameter
In Double This is the sample rate of the parameter
Out IParameterDefault* | Return value, reference to the newly added IParameterDefault
W Item.
Remove In VARIANT [ParameterDefault Item by index or name from this collection
RemoveAll None VOID Remove all [ParameterDefault items from this collection.
Item In VARIANT Return an [Parameterdefault Item by name (string) or index
number
SetName In BSTR* Return the [ParameterSet name that this parameter belongs to
SaveTable None VOID Save changes to this collection

ParameterDefault Item

The Parameter item is returned from the ParameterDefaults collection. Following are the
Methods in the ParameterDefaults collection along with their return value, or input argument and

description
Method Return Argument Type Description
Name Out BSTR* Get parameter name
Name In BSTR Set parameter name
DataType Out TadsDataType* Get parameter data type
DataType In TadsDataType Set parameter data type
Group Out BSTR* Get parameter group name
Group In BSTR Set parameter group name
SubGroup out BSTR* Get parameter subgroup name
SubGroup In BSTR Set parameter subgroup name
ShortName Out BSTR* Get parameter short name
ShortName In BSTR Set parameter short name
LongName Out SBSTR* Get parameter long name
LongName In BSTR Set parameter long name

July 2020

Proprietary information of Curtiss Wright © 2020

95

O diiaT TADNG osrrogamme

Units Out BSTR* Get parameter units name
Units In BSTR Set parameter units name
Color Out OLE COLOR* Get color value
Color In OLE COLOR Set color value
Width Out int* Get pen width
Width In int Set pen width
DataSourceType Out ladsDataSourceType* Get the data source type
DataSourceType In ladsDataSourceType Set data source type
DataSourceArgument Out BSTR* Get the data source argument
DataSourceArgument In BSTR Set data source argument
SampleRate out double* Get the data sample rate
SampleRate In double Set data sample rate
LoadLimitNegative Out double* Get negative design load limit
LoadLimitNegative In double Set negative design load limit
LoadLimitPositive Out double* Get positive design load limit
LoadLimitPositive In double Set positive design load limit
TimeScaleRangeMin Out double* Get time scale range min
TimeScaleRangeMin In double Set time scale range min
TimeScaleRangeMax Out double* Get time scale range max
TimeScaleRangeMax In double Set time scale range max
TimeCaleAuto in double Not currently used in IADS
TimeScaleAuto Out [adsOnOrOff* Get time scale auto (Not currently
used by TADS)
TimeScaleAuto In [adsOnOrOff Set time scale auto (not currently
used by TADS)
FreqScaleRangeMin Out double* Get frequency scale range Max
FreqScaleRangeMin In double Set frequency scale range Min
FreqScaleRangeMax Out double* Get frequency scale range max
FreqScaleRangeMax In double Set frequency scale range max
FreqScaleAuto In double Not currently used in IADS
FreqScaleAuto Out [adsOnOrOff* Get frequency scale auto (not
currently used by IADS)
FreqScaleAuto In [adsOnOrOff Set frequency scale auto (not
currently used by IADS)
Warning ThreshRangeMin Out double* Get warning threshold min range
Warning ThreshRangeMin In double Set warning threshold range min
Warning ThreshRangeMax Out double* Get warning thresh range max
Warning ThreshRangeMax In double Set Get warning thresh range max
Warning ThreshColor Out OLE COLOR* Get Warning Threshold color
Warning ThreshColor In OLE_COLOR Set warning threshold color
Warning ThreshLabel Out BSTR* Get warning threshold label
Warning ThreshLabel In BSTR Set warning threshold label
Warning ThreshLineWidth Out int* Get warning threshold line width
Warning ThreshLineWidth In int Set warning threshold line width
AlarmThreshRangeMin Out double* Get alarm threshold range min
AlarmThreshRangeMin In double Set alarm threshold range min
AlarmThreshRangeMax Out double* Get alarm threshold range max
AlarmThreshRangeMax In double Set alarm threshold range max
AlarmThreshColor Out OLE COLOR* Get alarm threshold color
AlarmThreshColor In OLE COLOR Set alarm threshold color
AlarmThreshLabel Out Out BSTR* Get alarm threshold label
AlarmThreshLabel In BSTR Set alarm threshold label
AlarmThreshLineWidth Out int* Get alarm threshold line width

July 2020 Proprietary information of Curtiss Wright © 2020 96

CURTISS -
WRIGHT

IADS Programming
User Guide

INDS.

AlarmThreshLineWidth In int Set alarm threshold line width
FilterActive Out ladsYesOrNo* Get filter active
FilterActive In ladsYesOrNo Set filter active
FilterAlgorithm Out IadsFilterAlgorithm* Get filter algorithm
FilterAlgorithm In TadsFilterAlgorithm Set filter algorithm
FilterPassType Out ladsFilterPassType* Get filter pass type
FilterPassType In ladsFilterPassType Set filter pass type
FilterLowCutoff Out double* Get filter low cutoff
FilterLowCutoff In double Set filter low cutoff
FilterHighCutoff Out double* Get filter high cutoff
FilterHighCutoff In double Set filter high cutoff
FilterOrder Out int* Get filter order
FilterOrder In int Set filter order (1..8)
WildPointRangeMin Out double* Get wild point range min
WildPointRangeMin In double Set wild point range min
WildPointRangeMax Out double* Get wild point range max
WildPointRangeMax In double Set wild point range max
WildPointCorrectionMethod | Out ladsDataCorrectionMethod* | Get wild point correction method
WildPointCorrectionMethod | In ladsDataCorrectionMethod Set wild point correction method
WildPointCorrectionValue Out double* Get wild point correction value
WildPointCorrectionValue In double Set wild point correction value
SignChange Out ladsYesOrNo* Get sign change
SignChange In ladsYesOrNo Set sign change
NullCorrection Out IadsNullCorrection* Get null correction type
NullCorrection In IadsNullCorrection Set null correction, depends on data
source type if TPP(nullOn or
nullOff), if derived(equationResult,
equationlnput
NullBaseline Out double* Get null basline value
NullBaseline In double Set null baseline value
NullBias Out double* Get null base value that is added to
the parameter value
NullBias In double Set null baseline value that is added
to the parameter value
NullGroup Out IadsNullGroup* Get Parameter Null group
NullGroup In TadsNullGroup Set Parameter Null group
SpikeDetectionMethod Out IadsSpikeDetectionMethod* | Get spike detection method
SpikeDetectionMethod In TadsSpikeDetectionMethod Set spike detection method
SpikeCorrectionMethod Out IadsDataCorrectionMethod* | Get spike correction method (last
good value or none
SpikeCorrectionMethod In IadsDataCorrectionMethod Set spike correction Method (last
good value or none)
SpikeChangeLimit Out double* Get spike change limit
SpikeChangeLimit In double Set spike change limit
ComputeType Out IadsComputeType* Get default compute type
ComputeType In TadsComputeType Set default compute type
ExcitationSignal Out BSTR* Get default excitation parameter
ExcitationSignal In BSTR Set default excitation parameter
WindowType Out TadsWindowType* Get window type
WindowType In TadsWindowType Set window type
Alpha Out IadsAlpha* Get alpha value for Kaiser-Bessel
Window
July 2020 Proprietary information of Curtiss Wright © 2020 97

CURTISS -
WRIGHT

INDS.

IADS Programming
User Guide

Alpha In IadsAlpha Set alpha value for Kaiser-Bessel
window type
AveragingMethod Out ladsAverageMethod* Get averaging method, (avgTime
not implemented
AveragingMethod In ladsAverageMethod Set averaging method, (avgTime not
implemented)
Overlap Out double* Get overlap value (0.0 >= value <
100.0
Overlap In double Set overlap value (0.0 >= value <
100.0
BlocksPerAverage Out int* Get blocks per average (1..5)
BlocksPerAverage In int Set blocks per average (1..5)
BlockSize Out IadsBlockSize* Get block size - (64 bytes..64K
bytes
BlockSize In TadsBlockSize Set block size - (64 bytes.. 64K
bytes
StringLookupTable Out BSTR* Get string lookup table
StringLookupTable In BSTR newVal Set String Lookup table
Delete Out VARIANT BOOL* Get Parameter deletion setting
Delete In VARIANT BOOL Set parameter deletion setting
Events Collection
Method Return Arguments \ Description
Count Out long* Gets the number of IEvent Items within the collection.
Add In BSTR Add a new IEvent Item to this collection by parameter name.
In BSTR IRIG time at threshold break.
Out IEvent** Return value reference to the newly added IEvent Item.
Remove In VARIANT Remove IEvent Item by index or name from this collection
RemoveAll None VOID Remove all [Event Items from this collection.
Item In VARIANT Return an IEvent Item by name (string) or index number
(0..Count). IndexOrName
Out IThreshold** | Return value, reference to the specified IEvent Item. Returns a
Set object by name (string) or index number (0..Count)
SaveTable None VOID Save changes to this Collection
Event Item
Method Return Argument \ Description
Group Out BSTR* Get the group name
Group In BSTR Set the group name
SubGroup Out BSTR* Get subgroup name
SubGroup In BSTR Set subgroup name
User Out BSTR* Get user name
User In BSTR Set user name
IrigTime Out BSTR* Get IRIG time
IrigTime In BSTR Set IRIG time
Name Out BSTR* Get the comment
Name In BSTR Set a comment
PropBag Out BSTR* Get property bag
PropBag In BSTR Set the property bag
Thresholds Collection

July 2020

Proprietary information of Curtiss Wright © 2020

98

O diiaT TADNG osrrogamme

Method Return Arguments Description
Count Out long* Gets the number of IThreshold Items within the collection.
Add In BSTR Add a new IThreshold Item to this collection by parameter
name.
In BSTR IRIG time at threshold break.
In ladsThresholdLevel | Threshold Level at the break
Out IThreshold** Return value reference to the newly added IThreshold Item.
Remove In VARIANT Remove IThreshold Item by index or name from this collection
RemoveAll None VOID Remove all IThreshold Items from this collection.
Item In VARIANT Return an IThreshold Item by name (string) or index number
(0..Count). IndexOrName
Out IThreshold** Return value, reference to the specified [Threshold Item.
Returns a Set object by name (string) or index number
(0..Count)
SaveTable None VOID Save changes to this Collection
Threshold Item
Method Return Argument Description
Group Out BSTR* Get the group name
Group In BSTR Set the group name
SubGroup Out BSTR* Get subgroup name
SubGroup In BSTR Set subgroup name
User Out BSTR* Get user name
User In BSTR Set user name
Level Out ladsThresholdLevel* Get Threshold Level
Level In ladsThresholdLevel Set Threshold Level
AnalysisWindowName Out BSTR* Get property bag
AnalysisWindowName In BSTR Set the property bag
DisplayType Out BSTR* Get property bag
DisplayType In BSTR Set the property bag
ParameterName Out BSTR* Get property bag
ParameterName In BSTR Set the property bag
IrigTimeAtBreak Out BSTR* Get IRIG time at threshold break
IrigTimeAtBreak In BSTR Set IRIG time at threshold break
ValueAtBreak Out double* Get value at time break
ValueAtBreak In double Set IRIG time
DisplayName Out BSTR* Get display name
DisplayName In BSTR Set the display name
Comment Out BSTR* Get the comment
Comment In BSTR Set a comment
PropBag Out BSTR* Get property bag
PropBag In BSTR Set the property bag

Selections Collection

Method Return Arguments ‘ Description
Count Out long* Gets the number of ISelection Items within the collection.
Add In BSTR Add a new ISelection Item to this collection by parameter
name
In BSTR IRIG time of selection.
In Double Value of selection
Out [Selection** Return value reference to the newly added ISelection Item.

July 2020 Proprietary information of Curtiss Wright © 2020 99

CURTISS -
WRIGHT

IADS Programming
® User Guide

Remove In VARIANT Remove ISelection Item by index or name from this
collection
RemoveAll None VOID Remove all ISelection Items from this collection.
Item In VARIANT Return an ISelection Item by name (string) or index number
(0..Count). IndexOrName
Out ISelection** Return value, reference to the specified ISelection Item.
Returns the Item by name (string) or index number
(0..Count)
SaveTable None VOID Save changes to this collection
Selection Item
Method Return Argument Description
Group Out BSTR* Get the group name
Group In BSTR Set the group name
SubGroup Out BSTR* Get subgroup name
SubGroup In BSTR Set subgroup name
User Out BSTR* Get user name
User In BSTR Set user name
IrigTime Out BSTR* Get IRIG Time
IrigTime In BSTR Set IRIG Time
Value Out double* Get Selection Value
Value In double Set Selection Value
Parameter Out BSTR* Get Parameter name
Parameter In BSTR Set Parameter Name
Filter Out BSTR* Get Filter
Filter In BSTR Set Filter
Display Out BSTR* Get Display Name
Display In BSTR Set Display Name
Comment Out BSTR* Get Comment
Comment In BSTR Set Comment
PropBag Out BSTR* Get property bag
PropBag In BSTRS Set the property bag
TestPoints Collection
Method Return Arguments Description
Count Out long* Gets the number of ITestpoint Items within the collection.
Add In BSTR Add a new ITestpoint Item to this collection by test point string.
In BSTR The start time of the test point
In BSTR The stop time of the test point
Out ITestpoint** Return value reference to the newly added ITestpoint Item.
Remove In VARIANT Remove ITestpoint Item by index or name from this collection
RemoveAll None VOID Remove all ITestpoint Items from this collection.
Item In VARIANT Return an IThreshold Item by name (string) or index number
(0..Count). IndexOrName
Out IThreshold** Return value, reference to the specified IThreshold Item. Returns
the Item by name (string) or index number (0..Count)
SaveTable None VOID Save changes to this Collection
TestPoint Item
Method Return Argument ‘ Description
Group Out BSTR* Get the group name
July 2020 Proprietary information of Curtiss Wright © 2020 100

CURTISS -
WRIGHT

INDS.

IADS Programming
User Guide

Group In BSTR Set the group name

SubGroup Out BSTR* Get subgroup name

SubGroup In BSTR Set subgroup name

User Out BSTR* Get user name

User In BSTR Set user name

Testpoint Out BSTR* Get testpoint

Testpoint In BSTR Set user name

Description Out BSTR* Get testpoint

Description In BSTR Set user name

Maneuver Out BSTR* Get testpoint

Maneuver In BSTR Set user name

StartTime Out BSTR* Get Start time

StartTime In BSTR Set Start Time

StopTime Out BSTR* Get Stop time

StopTime In BSTR Set Stop Time

PropBag Out BSTR* Get property bag

PropBag In BSTR Set the property bag

PlannedTestPoints Collection

Method Return Arguments Description

Count Out long* Gets the number of IPlannedtestpoints Items within the
collection.

Add In BSTR Add a new IPlannedTestpoint Item to this collection by
unique testpoint string

Out IPlanned Testpoint™®* Return value reference to the newly added

IPlannedTestpoint [tem.

Remove In VARIANT Remove [ParameterSet object by index or name from
this collection

RemoveAll None VOID Remove all [ParameterSet Items from this collection.

Item In VARIANT Return an [ParameterSet Item by name (string) or
index number (0..Count). IndexOrName

Out [ParameterSet** Return value, reference to the specified [ParameterSet

Item. Returns a Set object by name (string) or index
number (0..Count)

SaveTable None VOID Save changes to this Collection

PlannedTestPoint Item

Method Return Argument Description

Group Out BSTR* Get the group name

Group In BSTR Set the group name

SubGroup Out BSTR* Get subgroup name

SubGroup In BSTR Set Subgroup name

User Out BSTR* Get User name

User In BSTR Set User name

Testpoint Out BSTR* Get Testpoint

Testpoint In BSTR Set Testpoint (This is a user defined format)

Description Out BSTR* Get Description

Description In BSTR Set Description

Maneuver Out BSTR* Get Maneuver name

Maneuver In BSTR Set the Maneuver name

AircraftConfig Out BSTR* Get the Aircraft Configuration (This is a user defined
setting)

July 2020

Proprietary information of Curtiss Wright © 2020

101

CURTISS -
WRIGHT

INDS.

IADS Programming
User Guide

AircraftConfig In BSTR Set the Aircraft Configuration

FlightConditions Out BSTR* Get Flight Conditions (This is a user defined setting)
FlightConditions In BSTR Set the Flight Conditions

PredictedResults Out BSTR* Get the Predicted Results

PredictedResults In BSTR Set the Predicted Results

PropBag Out BSTR* Get Property bag

PropBag In BSTR Set the Property bag

July 2020

Proprietary information of Curtiss Wright © 2020

102

T TADS #osrgemmns

5.1.3 General Purpose Query Interface

From the ladsConfig API level general purpose queries can be made. This allows full
access to the Configuration file without using the Collection interfaces as detailed above.
Intimate knowledge of the File structure is required. Use caution with this routine, especially
with hierarchical tables, as entries made will most likely need to be made in other relational
tables as well

Query string construction has the following form:

“keyword <field name> from <table name> where <qualifiers>"
Keywords are:

1. Select - Selected values are returned in BSTR array

2. Update - Query user passes in a string to update in the configuration file.
3. Delete - Deletes one or more rows in a configuration file

4. Create - Create a table in the configuration file.

Field names: These are directly from the Configuration file; therefore, the query user must have
knowledge of its table construction: Multiple field names are separated by commas. A wild card
of "*' can be used in which case the entire row is returned with individual field values delimited
by the '|' vertical pipe character.

Table name: Table names are those that are in the configuration file, therefore the query user
must have knowledge of its construction.

Qualifiers: Qualifiers take the form of: “field name = value”. All values of type string must be
enclosed in single quotes, example: Group = 'Loads'.

Query Examples
1) Select * from Desktops - Get all fields for all entries in a particular table.

2) Select * from Desktops where Group = 'Flutter' - Get all fields for selected entries using a
"where" clause.

3) Select * from Desktops where Group = 'Flutter' & & AnalysisWindowName =
'DoublelntTest’ - Get all fields for selected entries using a compound "where" clause.

4) Select SubGroup from Desktops where Group = 'Flutter' & & AnalysisWindowName =
'DoublelntTest’ - Get one field for selected entries using a compound "where" clause.

5) Select System.RowNumber from Desktops - Get one field for selected entries using a
compound "where" clause. Note usage of "System.RowNumber. This selects a row based
on its unique Id (be careful with this).

6) Update BogusDesktops set * = a|b|c|d|e - Modify all fields in all rows in a table

7) Update BogusDesktops set * = a|b|c|d|e where Group = 'Flutter' - Modity all fields in the
specified row(s) based on a match in a single field.

8) Update BogusDesktops set SubGroup = 'Pat’ where Group = 'FQ' - Modify a single field in
a specified row.

9) Create table BogusTable (Group String, X Int, Y Int, AutoScale list(True, False),
Classification list(high,medium,low)) - Creates a table called BogusTable with fields as

July 2020 Proprietary information of Curtiss Wright © 2020 103

T TADS #osrgemmns

shown above. Note usage of the list type. This will create a dropdown list in the
configuration tool for easier user entry.

10) Delete * from BogusDesktops where Group = 'Flutter' - Delete every row from the
BogusDesktops table where the field value is Flutter

11) Delete * from BogusDesktops where System.RowNumber = 3 - Delete using "built-in"
unique system id or row number

5.2 IADS Data File API

Provides a COM API DLL interface to access IADS data directly from an IADS storage
file (.iadsData).

The Data Tester test program was written to test as much of the Data File Interface as
possible; it creates all formats of the periodic type and several for the aperiodic and multi-
periodic formats. The program will read and display IADS data in a console window and is for
demonstration purposes only.

The COM DLL, test project, on-line reference and Data Tester test program are available
for download on the Curtiss Wright IADS website at
https://iads.symvionics.com/support/programming-examples/.

July 2020 Proprietary information of Curtiss Wright © 2020 104

https://iads.symvionics.com/support/programming-examples/

T TADS #osrgemmns

6. TADS Automation Interfaces

6.1 TIADS Data Export Scripts

Provides the following IADS Automation Scripts:

1) Data Export - This is an event-triggered data export. You define your event triggers in the
code, and the script will attach to an already running IADS client and export parameters that
you have specified in the script to a CSV file. No GUI for this one, you have to tweak all
your settings in the code.

2) DataGroup Summary - Attaches to a client that is already running; takes the parameters from
a specified data group and exports them to an Excel spreadsheet and PowerPoint slides based
on start/stop times specified in the Test Point log.

3) IADS Data Move - Moves parameters from a specified input directory to a specified output
directory. Command-line driven.

4) Time Slice Export - Connects to an already running IADS client and provides a dialog that
allows you to select parameters from the currently running config file; specify a start/stop
time, and a destination directory to export them to. Exports the data to a CSV file.

The DataExport.vbs, DataGroup Summary.vbs, ladsDataMove.zip, TimeSliceExport.zip
and on-line reference are available for download on the Curtiss Wright IADS website at
https://iads.symvionics.com/support/programming-examples/.

6.2 IADS Data File Reader in Visual Basic

Provides the IADSDataFilelnterface dialog (Projectl.exe) to read IADS data directly
from an IADS data file and export to a CSV file.

The IadsDataFilelnterface.dll must be registered to use the reader.

The VBDataTester.zip (Projectl.exe) and IADSDataFilelnterface.dll are available for
download on the Curtiss Wright IADS website at
https://iads.symvionics.com/support/programming-examples/ .

July 2020 Proprietary information of Curtiss Wright © 2020 105

https://iads.symvionics.com/support/programming-examples/
https://iads.symvionics.com/support/programming-examples/

T TADS #osrgemmns

7. TADS Data Processing

7.1 TIADS Real Time Data Source Interface

This documentation describes the interface required of a real time data source to send
data to the IADS Server (CDS); the connection, protocol and format requirements.

The test project is available for download on the Curtiss Wright IADS website at:
https://iads.symvionics.com/support/programming-examples/ Data Processing Examples: 1.
TADS Data Source

The purpose of this instruction is to describe how to develop an interface that feeds data
to IADS; and how to test and troubleshoot the development effort. This development kit includes
an example data source program with source code.

Section 7.1.1 provides a specification describing the overall data source architecture
including connection, protocol and format requirements along with rules on providing data.
Section 7.1.2 describes an example data source program that is available as part of the
development kit which can be useful for further understanding and guidance. Section 7.1.3
includes instructions on how to use an IADS product named RT Station to check out the
interconnections between the data source and IADS Server along with viewing the data on an
IADS Client display. Section 7.1.4 gives tips on troubleshooting potential problems that may
arise during development and checkout.

7.1.1 Data Source Specification

Data Source Architecture

The real time data source architecture is one that provides data packets to the IADS
Server at as close to fixed rates as possible. Since IADS is a data driven architecture the more
consistent the rate the packets are fed to the IADS Server the better to provide a smooth data
flow. The recommended data packet frequency is 10-20 milliseconds. To compensate for
network and/or other system level delays a capability to buffer up data packets is recommended
at the data source to provide some flexibility for potential data delivery delays in order to prevent
data overflow/loss between the data source and the IADS Server. This buffering architecture has
the advantage of allowing for some “rubber-banding” in the downstream processing without
losing data at the data source.

Data Source Socket Interface

To communicate properly with the IADS Server, the data source must be set up as a
TCP/IP socket server. The data source will first perform a handshake that specifies the byte order
and format of the packets then will begin sending data packets. This protocol is a one-way
communication going from data source to IADS Server. After the initial handshake the data
source will continually send data packets (preferably in a blocked write mode) to the IADS
Server. These messages are recommended to be sent at a frequency of 10-20 milliseconds. The
message size can vary between data packets so in order to maintain the packet rate you may need
to send packets containing only time parameter samples in cases where data parameter rates are
low.

Typical usage of the data source is to keep the source running and allow the IADS Server
to perform multiple connections over an extended period of time. In order to accomplish this

July 2020 Proprietary information of Curtiss Wright © 2020 106

https://iads.symvionics.com/support/programming-examples/

T TADS #osrgemmns

functionality another feature of the data source should be to allow reconnections from the IADS
Server without having to restart the data source application.

Handshake Protocol

Upon initial connection to the data source, the IADS Server expects to receive two
handshake messages describing aspects of the data source environment. First a one-byte message
is expected that defines the byte order of all subsequent messages. The codes to specify the byte
order are as follows:

Little Endian = 1
Big Endian =2

Secondly a four-byte message is expected defining the code of the format of all
subsequent data packets. The data packets must not vary from this specified format and must also

conform to formatting specifications as defined in the next two sections. There are currently two
supported packet formats with the following codes:

Tag/value pair format = 100

Tag/size/value format = 101

Note: Tag/size/value format only supports Little Endian byte order.
Data Packet Header Format

Each data packet from the data source has a header that contains various record and status
information followed by a body that contains tag/value pairs. Each header contains 8 32-bit
fields (32 bytes) described as follows:

Field ‘ Name Description

Field 0 Message Size Total size of header and body (Field 0 non-inclusive)
Field 1 Sequence Number Message sequence counter

Field 2 Packets Sent Total number of data packets sent to IADS Server
Field 3 Data loss/Overflow Total number of data loss/overflow occurrences
Field 4-7 Dummy Currently unused fields

Except for field 0 (Message Size) and field 1 (Sequence Number) all other fields are
essentially unused or optional fields used to describe additional data source status.

Calculating the Message Size field consists of adding the remaining portion of the header
(28 bytes) to the entire size of the packet body. For example, if the packet body size is 1200
bytes then the Message Size field should contain the value 1228.

See Appendix C for a block diagram of the message format including the header.
Data Packet Body Format

Currently there are two supported data packet body formats. The first packet body format
(code 100) contains sets of tag/value pairs consisting of 16-bit tag fields and 32-bit value fields.
A tag is an integer that uniquely identifies a particular parameter. The values are the data
associated with each tag instance. The format of a single tag/value pair in 32-bit form is as
follows:

Tagl (16-bit)

July 2020 Proprietary information of Curtiss Wright © 2020 107

T TADS #osrgemmns

Tag2 (16-bit)
Valuel (32-bit)
Value2 (32-bit)

The body consists of (n) consecutive sets of these tag/value pairs. Therefore, the size of
each message will consist of 28 bytes of header (message size field is non-inclusive) plus (n)
times 12 bytes of body. This also means there are a total of (n) times 2 parameters per message.

The second supported packet body format (code 101) contains sets of tag/size/value sets
consisting of 32-bit fields containing the integer parameter identifier followed by the data unit
size in bytes followed by the data value. The format of a single tag/size/value set is as follows:

Tag (32-bit)
Size (32-bit)
Value (number of bytes specified in Size field)

The body consists of (n) consecutive sets of these tag/size/value sets. Therefore, the size
of each message will consist of 28 bytes of header (message size field is non-inclusive) plus (n)
times (8 + size) bytes of body where size is the size in bytes of the data associated with each
particular tag. Currently this interface does not support variable size data for a particular tag.
This also means there are a total of (n) parameters per message.

See Appendix C for a block diagram of the supported message formats.
Packet Content Notes

A primary requirement for parameters contained within the stream of data packets is that
the order of the data samples coming out of the data source be chronological (time sequential) for
a particular parameter. Each periodic parameter (i.e. parameter with sample rate greater than 0) is
expected to have a consistent interval (with allowances for some minor rubber-banding) in the
data stream correlating to the sample rate specified in the parameter definition file. No pre-
alignment of data across parameters is assumed (i.e. no manipulation of the data is required prior
to entering IADS).

Time parameters are required to be part of the data stream. Ideally the sample rate of the
time parameters should be greater than or equal to the highest sample rate of the data parameters.
The time words should be interleaved in the data packets such that each sample of a particular
data parameter has a unique time stamp. The following is an example that illustrates a valid
time/data sequence inside a packet where P1 and P2 are samples from 2 different data parameters
and P2 is half the rate of P1. T1 and T2 are the upper and lower words respectively from the time
parameter (see the section on “Time Parameters” below for more detail on time word format):

T1/T2/P1/T1/T2/P1/P2/T1/T2/P1/T1/T2/P1/P2/T1/T2/P1/T1/T2/P1/P2...

Low sample rates on time parameters can have side effects. Since IADS is basically a
data driven system the update rates of the IADS Client displays can be affected by the sample
rate of the time parameters. Time parameter rates lower than about 50 samples per second may
show a ‘stuttering’ behavior on the client displays. See the section on “Time Parameters” below
for more detail on time parameters.

July 2020 Proprietary information of Curtiss Wright © 2020 108

T TADS #osrgemmns

7.1.2 TADS Server Setup

In order for the IADS Server to operate properly a parameter definition file must exist
that provides information on how to process the packet contents. The parameter definition file is
also known as the PRN file and typically has a .prn extension on the file name but is not
required. The details of that file are described as follows:

Parameter Definition File

The TADS Server requires a file to exist prior to system startup that defines information
on parameters expected to be received in the data stream from the data source. The set of
information includes tag id, parameter name, sample rate and data format (e.g. integer, float,
unsigned integer, etc.) See Appendix B for typical entries in the file.

The first field corresponds to an integer tag identifier to uniquely associate a value with a
parameter in the data stream. The second field represents the name of the parameter as specified
in the IADS configuration file ParameterDefaults table. The third field corresponds to the
expected sample rate in samples per second that the parameter will be received from the data
source. The sample rates can be integer or floating point. Sample rates of 0 or 0.0 denote
aperiodic data. The next field identifies the format representation of the value coming from the
data source. The format codes currently supported are as follows:

Data Format Description Code Value
32-bit integer Integer 0
32-bit unsigned integer Discrete 1
32-bit single precision floating point Float 2
64-bit integer Long 3
64-bit unsigned integer Ulong 4
64-bit double precision floating point Double 5
Binary objects Blob 7

BLOB data can be identified as binary data of any size aligned on byte boundaries.

There is also extended information that can be added to parameter definition entries. The
general format of these extended entries is as follows:

Key = Value

Key is a reserved keyword that is recognized by the IADS Server to represent a specific
piece of parameter information and Value is the value associated with the keyword. Currently
there are two supported extended information keywords: “DataSize=n"’ and “SystemParamType
= type” the latter of which is described further in Section 7.1.3.

Currently the IADS Server does not support variable sized samples within a single tag.
See Appendix D for an example Parameter Definition file.

System Parameters

July 2020 Proprietary information of Curtiss Wright © 2020 109

T TADS #osrgemmns

Following are parameters needed for the IADS Server to fully operate properly. These are
system-based parameters used for processing other data parameters or for presenting status
information. There are two types of system parameters, time parameters and decom status
parameters. Time parameters are required to be included as part of the overall parameter set but
decom status parameters are optional. The following subsections describe these parameter types:

Time Parameters

Time is represented as a 64-bit word in units of nanoseconds consisting of the time offset
from the beginning of the year. As an example, if IRIG time is set at 001:01:00:00.000 then the
64-bit time value would be 3600000000000 (i.e. one hour offset from the beginning of the year).
The protocol required to transfer time via the data packets consists of splitting the time word into
two 32-bit words. The upper 32-bit word must be identified in the parameter definitions file by
appending the SystemParamType = MajorTime to the entry of the parameter to be used as the
high order time word. The lower 32-bit word must be identified by appending SystemParamType
= MinorTime to the parameter definition file entry of the parameter to be used as the low order
time word. The sequence of the time words in the packet should be the upper time word followed
by the lower time word. See the data flow example in the previous section “Packet Content
Notes” where the upper word is represented as T1 and the lower word is represented as T2.

Ideally the sample rate of the time parameters should be greater than or equal to the
highest sample rate of the data parameters. The time words should be interleaved in the data
packets such that each sample of a particular data parameter has a unique time stamp.

Low sample rates on time parameters can have side effects. Since IADS is basically a
data driven system the IADS Client display update rates can be affected by the sample rate of the
time parameters. Time parameter rates lower than about 50 samples per second may show a
‘stuttering’ behavior on the client displays.

Decom Status Parameters

Decom Status is another system parameter used by the IADS Server to obtain data stream
information such as sync loss. This parameter is identified in the parameter definition file by
using the extended information property “DecomStatus” (see Appendix D for the data format of
this parameter). The “DecomStatus” parameter will be defined in the IADS Client display using
the default naming convention of ladsDecomStatus(n) . Where (n) is the stream number for
multiple PCM stream setups. These parameters are automatically created in the IADS
Configuration file upon startup and can be used by the IADS Client along with pre-defined
derived functions for display purposes. These parameters are also used for informational
purposes by the IADS Operator Console in a real time environment. Even though these
parameters are not required in the stream, definition in the parameter definition file (see “IADS
Data Source Project” section below) is recommended. The currently supported decom status
format is shown in Appendix E.

The following is a parameter definition file excerpt showing both the Time and Decom
Status system parameter definitions.

1 DecomStatus 50.0 2 SystemParamType = DecomStatus
2 Paraml 50.0 2
3 Param2 50.0 2

July 2020 Proprietary information of Curtiss Wright © 2020 110

T TADS #osrgemmns

4 Param3 50.0 2
5 Paramé 50.0 2
6 TimeUpperWord 1000.0 1 SystemParamType = MajorTime
7 TimeLowerWord 1000.0 1 SystemParamType = MinorTime

Example Data Source Program

The purpose of the example IADS Data Source program is to provide a better
understanding and guidance on the specifics of developing an interface to communicate with the
IADS Server. The program initially waits for an IADS Server to connect and then sends data
packets containing simulated data. The program also allows for reconnections to the IADS
Server without re-launching the application which is a useful feature of the data source.

The TADS Data Source program is available either by requesting the IADS Data Source
Developers Kit from Curtiss Wright IADS or downloading from the Programming Examples
page on the Curtiss Wright IADS web site (https://iads.symvionics.com/support/programming-
examples/) by selecting the IADS Data Source option under the section named “Data Processing
Examples”.

TADS Data Source Project

The IADS Data Source program is a Microsoft Visual Studio 2005 project written in C++
that contains three example programs demonstrating how to output the different packet formats
available along with various methods of inserting data inside the packets. The project also
contains three parameter definition files that describe the parameter specifications for each
example. For more background information on packet setup and communication protocol along
with details on parameter definition files see Section 7.1.1 of this document.

In order to specify which example program to apply, open up the project in Visual Studio
and go to the Solution Explorer then Right-click on one of the source files named
IadsDS_SimStyle.cpp, ladsDS DecomStyle.cpp or ladsDS_BlobStyle.cpp and select Properties.
Then in the Property Pages dialog go to the Excluded From Build entry located under
Configuration Properties > General and specify No to include the file or Yes to exclude the file.
Make sure only one of the cpp files is set to No before building the project.

July 2020 Proprietary information of Curtiss Wright © 2020 111

https://iads.symvionics.com/support/programming-examples/
https://iads.symvionics.com/support/programming-examples/

R T IADS vesrrogemming

IadsDS - Microsoft o
Eile Edit View Project Build Debug Tools Window Community Help
B-E-cdd % b Debug - Win32 - | [# tGetAppBitsize - | SR RO
b, A |4 55 = 13 @5 Ry i j
Solution Explorer - Solution TadsDS' (1 project) ¥ 2 X | 1adsDS_SimStyle.cpp& | Start Page |
2 | = (Global Scope)
[Solution TadsDS' (1 project) // Wnat is this Project ?
=33 TadsDS 1/
[~ [CDS PRN Files i 1. The IadsD5 is a Microscoft Dev Studio project that contains three
[Debug Files fr demonstrate sending data to the IADS Server using differnet techr
g
[Header Files fr levels of complexity. The main purpose is for training and not p:r
... [Resource Files Iy left out more complex structures so as not to hinder the underste
E| 557 Source Files r of making the appropriate data packets for the IADS Server and tl
H TadsDS.rc s 2. This source is the "Simulator™ style program which creates data f

all at the =same sample rate, typical of Simmlator systems output.

8¢ IadsDS_BlobStyle.cpp o

ﬁf-}_‘d ladsDS_DecomStyle.cpp i with this exmample because it is the least complex.
ﬁ‘}ﬂ]adsDSSimSt_',rlecpp i 3. There are two other data source example programs in this project,
= I "IadsD5_DecomStyle” and "IadsD5_BlobStyle" styles. The Decom styl
ff frame strucutre that replicates a buffer from a typical Decom ca:r
ff example which shows how to properly interleave data of disimilar
- — e T |1ingle parameter. It demc
IadsDS_SimStyle.cpp Property Pages L?P| X |
Configuration: | Active(Debug) - | Platform: |Active{Win32) '] [Configuration Manager...]
= Configuration Properties Excluded From Build No prder to do end-to-end t
.. General Tool C/C++ Compiler Tool =ted from SYMVIONICS the

[peds to be installed on
ion to make a connectior
= with RT Station.

ent. This document cont

You can get this docume
IADS Server Developers

me Data Source Interface
[DataSource.zip

o SYMWVICNICS by reguest
iles.symvionics.com or n
fonics.com for the kit.

£35S0
Outpq-
Show
- Excluded From Build
| Excludes the selected file from the build in this configuration.
7 oK] [Cancel Apply
- |

% Find Results 1 | Code Definition Window | 2 Call Brow:erl@ OUtputﬁBreakpoint:

Ready

The different example programs are described as follows:

1) Simulator Style (IadsDS_SimStyle.cpp) - This program sends four data parameters along
with time words to the IADS Server. The data parameters are all at the same sample rate
which is typical of simulator output. Since this is the simplest case, we recommend that you
start with this example. To setup a project build, the ladsDS_SimStyle.cpp should be the only
cpp file where the Excluded From Build property is set to No. The parameter definition file
associated with this program is named ladsDS.prn.SimStyle and located in the main project
directory. Note that this program applies packet format 100 (tag/tag/value/value).

2) Decom Style (IadsDS_DecomStyle.cpp) - This program sends five data parameters along
with time words to the IADS Server. The data parameters are at different sample rates which

July 2020 Proprietary information of Curtiss Wright © 2020 112

O diiaT TADNG osrrogamme

3)

is typical of decom-based systems. This provides a more complex example showing how to
populate packets using differing sample rates. To setup a project for build, the

IadsDS DecomStyle.cpp should be the only cpp file where the Excluded From Build
property is set to No. The parameter definition file associated with this program is named
IadsDS.prn.DecomStyle and located in the main project directory. Note that this program
applies packet format 100 (tag/tag/value/value).

Blob Style (IadsDS_BlobStyle.cpp) - This program sends one Blob parameter along with
time words to the IADS Server. The Blob parameter contains four floating point parameters.
To setup a project for build, the ladsDS BlobStyle.cpp should be the only cpp file where the
Excluded From Build property is set to No. The parameter definition file associated with this
program is named IadsDS.prn.BlobStyle and located in the main project directory. Note that
this program applies packet format 101 (tag/size/value).

Running the IADS Data Source Program

The IADS Data Source program can be run either within the Visual Studio environment

or by creating a shortcut on the Windows desktop that points to the program’s executable file
(IadsDS.exe). Each version of the example program launches a command window and then goes
into a state that waits for the IADS Server to connect. The next section provides instructions on
how to use IADS to test the data source interface.

B ch\projectsitoolshiadsdatasource\debughladsD5.exe — O =

July 2020 Proprietary information of Curtiss Wright © 2020 113

R T IADS vesrrogemming

7.1.3 Testing the data source using IADS Real Time Station

To test the data source interface, we recommend using the IADS Real Time Station (RT
Station) product in order to perform communication protocol and data flow verification
activities. RT Station is an installable application that includes both the IADS Server and IADS
Client display subsystems so that data from the data source program can be delivered and viewed
in IADS.

The RT Station installation package is available either by purchasing the product from
Curtiss Wright (Part numbers are IADS-TELEM-RTSTATION-1 or IADS-TELEM-BASE-TPP)
or by requesting the IADS Data Source Developers Kit (IADS-TELEM-DEV)

Running RT Station

Running RT Station brings up a start wizard that will guide you through the process of
selecting setup information that describes how to connect to the data source program and specify
the parameter definition file. The startup steps are as follows:

1) Make sure the data source program is running and waiting to connect to IADS.
2) Double click the IADS Real Time Station icon on the Windows desktop.

3) On the Choose Data Source page select the IADS Custom option from the dropdown menu
in the Data Source field. Click Next to continue.

-
IADS®

‘welcome to the [ADS Start Wizard, el be walking you
thraugh the steps to zetup and acquire data for use in
the |4D5 system.

Please select the hardware that will be the zource of your
data.

Draba Source: |[EER R)]

Choose Data Source... Camtinue to the nest step to define the specific setup of
the hardware...
< Back Mest > Firiizh Catwzel Help

July 2020 Proprietary information of Curtiss Wright © 2020 114

CURTISS -
WRIGHT

IADS Programming
® User Guide

4) On the Choose Data Host page enter the name or IP address of the computer running the data
source program in the Host Name entry. This can be entered manually or selected via the
browse button on the right of the entry. The Portld entry defaults to 49000 which is the initial
setup in the example data source program. This field can be edited to specify the port id that
is available on the data source for connection. Click Next to continue.

-
IADS®

Choose Data Host...

’ < Back] [

heut =

Ir thig step, we'll be specifying the network location of
your data zource hardware, A0S will uze this infarmation
to connect to your data source server across the
network and obtain data.

=l

Flease enter the computer host name of pour data source
hardware.

Host Mame: DataSourceComputert ame D

IF your server's netwark, port [0 iz different from the default
sefting, you can modify it here.

Partld: 43000

Continue to the nest step to define the available parameters...

Firizh [Cancel][Help

]

5) On the Choose PRN File page select the parameter definition file that contains the parameter
specifications of the data source output. There is a browse button available on the right of the
entry to assist in locating the file. If you are running one of the sample programs the
matching parameter definition files are in the IADS Data Source project location. Click Next

to continue.

IADS®

Choose PRH File...

It thiz step, we'll be zpecifying the setup file that
describes what parameters are available ba lADS from
your data zource. This is more commonly refered to az a
PR file ar Parameter Definition file.

- B

Pleaze select the PRN file.

C:MadsFilestiadsCDS . pr. SimStyle

Continue to the nest step ta define the destination directom...

< Back

Pt »

Firizh Cancel Help

July 2020

Proprietary information of Curtiss Wright © 2020 115

CURTISS -
WRIGHT

INDS.

IADS Programming
User Guide

6) On the Choose Data Directory page select the destination folder for your IADS data storage
files. A browse button is available on the right of the entry to assist in locating the directory.
Click Next to continue.

IADS®

Choose Data Directory...

In this step, we'll need to specify where the saved data
will be stored on pour system, Please choose the fastest
storage device available on pour spstem [preferably not a
remate dive or ISB device).

B

™ Prevent me from ovensriting previous archives

™ Disable Data Archiving

Flease select the destination directory for your data.

IE:'\IadsFiIes\DutputData J

Continue to the nest step to define your 1ADS Config file...

< Back |

New> | Fish |

Cancel | Help |

7) On the Choose IADS Config File page select the Create new Config file option. This will

automatically create a new [ADS Configuration File from scratch that contains the

parameters specified in the parameter definition file you selected earlier in the wizard. Click

Next to continue.

IADS®

Choose IADS Config File...

Ir this final step, we'll need to specify the starting 1405
Config file to be uzed with your data. The |ADS Config file
defines the display screens and other "end user' analysis
ariented information,

— Config File Selection

" Choose existing Config file Config

| |

— Parameter b anagement in Config File

¥ &llow 1405 to add parameters found in data source

¥ &llow 1405 to remove parameters no longer in data sre

Continue to the final step to start the data processing. .

¢ Back | Mest » I Firizh Cancel Help

July 2020

Proprietary information of Curtiss Wright © 2020

116

R T IADS vesrrogemming

8) On the Start Data Acquisition page review the settings and click Finish to start IADS.

~

IADS®

Wwe'e now ready to start the data acquisition, Please
revien your gettings and press the Finish button to gtart,

Data Source:; Cugtom

Parameter Info: - C:\adsFileshiadsCOS. prn.SimStyle
Destination Dir: C:A\ladsFiles\DutputD ata

1405 Config File: Mew Config

Data Src Host: DataSourceConnputertd ame
Drata Src Portld: 49000

[~ Popup warning if vou are ovenvniting previous archive

Start Data Acquisition...
E . Preszz finizh to start data acquisition. .

< Back | MHext » | Finigh | Cancel | Help |

At this point RT Station will connect to the data source and start ingesting and processing
data packets. The IADS Client application will then be launched and you will be prompted to
startup the client via the IADS Log On dialog. Select the predefined user name Userl and
desktop name Desktop] then click the L.og On button (This step is automatic if User]l and
Desktopl are the only options.) This user and desktop setup contains a blank Analysis
Window (Window1) which acts as a palette for data displays to be added.

User Mame: IUserl

Desktop: I Desktopl

Group: SubGroup:
Group SubGroup

Mew User | Help |

Build 8.1

July 2020 Proprietary information of Curtiss Wright © 2020 117

R T IADS vesrrogemming

Creating Displays in IADS

In order to view the data being delivered from the data source you need to create displays
within the IADS Client application. IADS displays are created using icons in the Display Builder
shown below. The Display Builder button is located in the far-right portion of the IADS
Dashboard. Use the Window1 analysis window to house the displays. The steps to build up
displays are as follows:

1) On the Dashboard click the Display Builder button.

ChangeDesktop
Global Time Message Log Log Off

S Logs FioeDashbonr

2) On the Display Builder dialog click the Data Displays tab. A selection of display types is
presented.

|
{’_.T-—‘:HT |1u1u1uu| |'T'_'l'_!|
i=E

: H:' ¥

[val 5 | | Label

ARORAGAGE
DAAGERGE
BEORADG0E

July 2020 Proprietary information of Curtiss Wright © 2020 118

R T IADS vesrrogemming

3) On the Data Displays tab click on the Vertical Stripchart icon % then hold down the left
mouse button and drag onto Window1. This will create a new instance of a Stripchart display
inside the window.

[==

Windowl
|

This window has NOT been classified

G &-2- M BRSNS | B beiba Bg e i LA D

Freq RFreq ResP ResA S&LL LDec LDA LAmp PRD RD THCF HPD AC Filter

|]} |

Mo Parameter

K710 —1 4 41
-1.25 1] 1.25

RIE

This window has NOT been classified

July 2020 Proprietary information of Curtiss Wright © 2020 119

R T IADS vesrrogemming

Adding Parameters to an IADS Display
1) On the Dashboard, click the Parameter Tool button.

Display Builder ChangeDesktop Performance

Global Time Message Log Log Off

1AD5 Logs Cenfiguration HideDashboard Help

2) On the Parameter Tool select a parameter then hold down the left mouse button and drag
onto the Stripchart display. Select Value in the popup options after dropping the parameter
onto the display (i.e. releasing the left mouse button).

ParameterTool @M

|Param_1 |

Parameter I ShortMame |ﬂ

Param_1

Param_2

Param_3

Param_4 F
-

1] [» IJ

July 2020 Proprietary information of Curtiss Wright © 2020 120

R T IADS vesrrogemming

= | B S

Windowl

This window has NOT been classified

G & s W |l e B B2 AR I o e i e B |

001:00:09:24.020
1.000

[1]} | icomm)

Param_1
K3ICH —r+ 4
i 25 a0
| E—

i

v

This window has NOT been classified

The following are example windows showing data from the three sample programs contained
in the TADS Data Source project:

Simulator Style

July 2020 Proprietary information of Curtiss Wright © 2020 121

IADS Programming
® User Guide

CURTISS -
Window1 — O x
This window has NOT been classified
[P [P [Or (O O S it L DN
| \% E;U |-|___P’I Reset || Freq I% ResP ResA %LL || LDec LDA Lamp PREOD RO THCF HPOD AC Fllter ” AlL 1 2 5 10 20
007:00:02:03.400 ;l
170.000 ==
Param_1 Param_2 Param_3 Param_4 N
Pl e I e I e e e e I e F e e L L I L R B
0 25 a0 ||-4945 485 149 0 125 250 0 250 500
)] n . n
!
i FI J[
/] _
.
i T
i | I
i {
/ ! |
! ! !
! !
!
f [
! |
/ |
! |
i
=
{
/ !
This window has NOT been classified
Decom Style
Window1 i (] ®
This window has NOT been classuﬁed
-'-Hr:' r, o B [y *w-v-;-'—- L At i
G-z B HESGE BREEFEE YR (a1 2 5 10 205mwx00 |
1001:00:01:11.860 |001:00:01:11.860 1001:00:01:11.860 | |001:00:01:11.860 | |001:00:01:11.850 |
RALUE 400 Wikt | | s50m el]
Param_50 Param_100 Param_200 Param_400 Param_800 -
T =i+ AR KWW % Ak P e~ b il B I e 30w —i % Ak
0 25 s0f-495 495 1400 125 250200 200 ssaff o 500 1e+3
i .4 e .3 / ai
HA &

This window has NOT been classified

July 2020 Proprietary information of Curtiss Wright © 2020 122

CURTISS -
WRIGHT

INDS.

IADS Programming
User Guide

Blob Style

Window1

15 &~ 2~ ey | B R

| Freq RFrcq ResP Resa %LL

This window has NOT been classified

i o b
|| LDec LDA LAmp PRD

RD THCF HPD AC Filter

1 |2 JafJa]ls]|e |z

i

oo

41 (01 0o co 41
oo co 4

oo cCo
0o co 4 (1]

D[om

-
-w

This window has NOT been classified

More detail on display types and general client functionality can be found in the IADS
Client Help system which can be accessed via the lower right-most button on the Dashboard.

ParameterTool

Ii]ln:uhal Time
Li'-.DS Logs

Display Builder

I‘;h.:"ag: Lng

ChangeDesktop
Save C nnh;

July 2020

Proprietary information of Curtiss Wright © 2020

123

T TADS #osrgemmns

7.1.4 Troubleshooting

Validating Time

When the IADS Server connects to the data source and starts receiving packets it goes
through a brief period of verifying that time parameter values are increasing at the expected
increment. A common problem with a new data source interface is that the IADS Server may not
successfully validate time during startup because the time values are not increasing at an
increment based on the time word sample rate. For example, if the rate of the time parameter is
1000 samples per second the IADS Server will expect time value increments of 1 millisecond per
sample. Any time decrements or increments over 2x the expected rate will cause a validation
failure. If time does not successfully validate a dialog containing possible reasons for failure will
pop up as follows:

Data Source Startup Error d

I.- W% Error - The Data Systern was not able to Validate Time, Common
‘S¥' Reasons are:

1) Time code generator may not be working properly

2} Time Parameter information is not correct (Verify Tagld, Name, Data
Format, Sample Rate)

3) Data Source host and/or port id specified from the wizard are
incorrect

For additional Information, please see the log file: (
ChladsFiles2\OQutputDatatLogs\ladsCdsLog.txt)

IADS will Exit after selecting Ok

Typical reasons for time validation failures are as follows:

1) One or both time parameter tag ids are not found in the data. In this case verify that the
parameter definition file that was entered during wizard startup contains the correct tag ids
for the upper and lower time parameters. Verify that the data source is actually placing time
parameter samples within the data packets. Check that the data source is truly sending data
packets to the IADS Server.

2) Invalid time sequence errors. In this case verify the sample rate of the time parameters in the
parameter definition file are correct. Verify there are no upstream errors occurring from the
time source...e.g. Time Code Generator. Time values that seem corrupted (e.g. IRIG day
values outside the range of 1-366) could mean that there is a packet misalignment...verify
that the packet size specified in the 1st word of the packet header corresponds to the actual
size of the remaining portion of the header along with the packet payload size.

A source of information that assists in determining reasons for validation errors is a file
named “timeOut0.txt” located in the Logs folder under the IADS data directory that was
specified during wizard startup. This file contains time values of each time word received by the
IADS Server during the time validation period. An empty file means that one or both time
parameter tag ids were not sensed during the validation period (see reason 1 above). The file is

July 2020 Proprietary information of Curtiss Wright © 2020 124

T TADS #osrgemmns

also valuable for obtaining more detail on invalid time sequence errors (see reason 2 above). An
example format of the “timeOut0.txt” file is as follows:

001:00:00:00.020 (86400020000000)
001:00:00:00.040 (86400040000000)
001:00:00:00.060 (86400060000000)
001:00:00:00.080 (86400080000000)
001:00:00:00.100 (86400100000000)

The 1st column is the IRIG representation of the time values and the 2nd column is the
64-bit integer representation of the values (in nanoseconds). In this example the time is
incrementing by 20 milliseconds per sample which should correspond to a 50 sample per second
rate for the time parameters specified in the parameter definitions file

For further troubleshooting assistance please zip up the entire Logs folder located in the
IADS data directory and send to iads-support@curtisswright.com to help in analyzing the issue.

7.2 TADS Command Interface

The IADS Command interface assists users with programming their own command and control
application for the IADS real-time system.

In order to command and control the IADS Real-time system the EUCCA must interface to the
CDS Command server that is part of the CDS running application. Interfacing to the IADS
Commander is optional, but is recommended because the function of this application may
increase in future releases. The CDS Command server interface is used to command the CDS
application with functions such as validation, startup, resets, and shutdown and to retrieve status.
The IADS Commander is typically installed on the target computer to run upon login. Its
purpose is to allow remote startup of an IADS application such as the CDS and the IADS display
client and to retrieve status on the computer and file transfers. The EUCCA will typically use the
IADS Commander to transfer needed startup files for the CDS and the IADS display clients.

The IADS commander can also be used to launch the CDS, then, upon successful start of the
CDS, start the IADS display clients. During real-time the EUCCA will use the CDS command
server to get status and perform a shutdown. Both the CDS and the IADS Commander interfaces
are client/server socket-based network applications that utilize TCP/IP on well know Port Ids.
Following is a notional diagram of EUCCA and the component server interfaces.

July 2020 Proprietary information of Curtiss Wright © 2020 125

mailto:iads-support@curtisswright.com

T TADS #osrgemmns

CLIENT/SERVER SOCKET BASED SYSTEM USING TCPIIP

DATA
SOURCE
(UNLIMITED)
¥ REAL TIME CLIENT WORESTATIONS
M_ Server
IANDS IADS.
R DS Client Client
Servar
TADS T4Ds
N IADS Commander Commander
Commander
A A
USER
COMMAND
» AND -
ToRARP CONTRDL TLRIP Connection
APPLICATION

7.2.1 TADS Commander

The IADS Commander is part of the IADS Real Time system installation package and
after install will run upon login of the computer. The IADS Commander is installed on the IADS
display client workstations and the IADS Server (The CDS). The primary purpose of the IADS
Commander is to provide a socket-based interface to start and terminate IADS application
components, get status on the machine that it installed on, and performing critical functions such
as transferring application startup files. The IADS Commander utilizes the TCP/IP protocol
therefore the EUCCA will make an active connection and behave as a client making requests and
receiving message replies from the IADS Commander server. Once complete the EUCCA needs
to disconnect after which the IADS Commander will be ready for further connections.

Connection Information

Field Entry/Selection

Connection Port 58003
Connection Type TCP/IP

Protocol Overview

e Fixed length message packet of 2000 ASCII characters

e Client performs a send on the socket of the full 2000 characters regardless of the message
type

e The IADS Commander server performs the function and sends back a status string

e C(Client performs a receive on the socket to retrieve the response message

e Argument strings cannot contain spaces

July 2020 Proprietary information of Curtiss Wright © 2020 126

T TADS #osrgemmns

TADS Commander Message Syntax
Message:<sp>Message:<sp>[Arguments]|\n[Message...\n]

IADS Commander Messages Overview

Message ‘ Description

CreateProcess Create a process on a local or remote computer

TerminateProcess Terminate a process on a local or remote computer

ForwardMessage Send a message to another Commander

ProcessStatus Determine if a process is running on a remote machine

ProcessSearch Find all processes given a process name

TransferFile Transfer a file from one computer to another

WritePermission Get the file permission for the given file

TempPath Get the Windows temporary path for a remote machine

SystemInfo Get certain Windows system information

ProcessInfo Get certain Windows process information

PathlsDirectory Check if the path sent from the Client is an actual path on the remote

machine

MakeDirectory Create the directory given the path sent from the Client

DirectoryHasData Check if the directory already contains IADS data

GetNextFreeDirectoryName | The Commander returns a directory name

FileExists The Commander checks if the file already exists
CreateProcess

Description: Create a process on a local or remote computer.

Behavior: The IADS Commander will run the process given the process name (not
recommended) or the PID if the process name is empty.

Request Message

“Message: CreateProcess\nProcessName: \nArguments: \nWorkingDirectory: \n”

Request Message Arguments

Argl (ProcessName) — Full path and name of the process.

Arg2 (Arguments) — User specified arguments passed to the process.

Arg3 (WorkingDirectory) — Windows will start the process with this as its working directory.
Response Messages

1 "Message: Acknowledge\nProcessStatus: Stopped\n”

2 "Message: Acknowledge\nProcessStatus: Running\nPID: \n”

CreateProcess message process:
1) Client sends the CreateProcess message with the required arguments.

July 2020 Proprietary information of Curtiss Wright © 2020

127

T TADS #osrgemmns

2) Server receives the message and performs the function.

3) Server responds with a status message.
4) Client receives the status message.

TerminateProcess

Description: Terminate a process on a local or remote computer. Use of the PID argument is
recommended.

Behavior: The Commander will hard terminate the process specified by the process name (not
recommended) or the PID. Be careful with this call because it kills the process without notifying
it.

Request Message

“Message: TerminateProcess\nPID: \nProcessName: \nExitCode: \n”

Request Message Arguments

Argl (PID) — Kill process by the process ID.

Arg2 (ProcessName) — Kill Process by Process name (use caution with duplicate running
processes).

Arg3 (ExitCode) — User specified arguments passed to the process.

Response Messages

1 "Message: Acknowledge\nProcessStatus: Stopped\n

2 "Message: Acknowledge\nProcessStatus: Running\nPID: \n

Terminate message process:

1) Client sends the TerminateProcess message with the required arguments.
2) Server receives the message and performs the function.

3) Server responds with a status message.

4) Client receives the status message.

ForwardMessage

Description: Send a message from the currently connected Commander to another running on a
different computer.

Behavior: The Commander will forward the message onto the Commander running on the
remote computer specified by the Host argument.

Request Message

“Message: ForwardMessage\nHost: \nRemoteMessage: \n”

Request Message Arguments

Argl (Host) — Host with running commander to forward the message to.

Arg2 (RemoteMessage) — Message to forward.

1 "Message: Acknowledge\nForwardMessage: %s\n”

2 - Error "Message: Acknowledge\nForwardMessage: Unable to Parse Message\n”

July 2020 Proprietary information of Curtiss Wright © 2020 128

CURTISS -
WRIGHT

IADS Programming
® User Guide

3 - Error "Message: Acknowledge\nForwardMessage: Unable to Connect to
RemoteCommander\n”

4 - Error "Message: Acknowledge\nForwardMessage: Unable to Send Message to
RemoteCommander\n”

5 - Error "Message: Acknowledge\nForwardMessage: Unable to Receive Message from Remote
Commander\n”

ForwardMessage message process:

1) Client sends the ForwardMessage message with the required requirements.

2) Server receives the message and performs the function.

3) Server responds with a status message.

4) Client receives the status message.

ProcessStatus

Description: Determine if a process is running on a remote machine. Use of the PID argument is
highly recommended.

Behavior: If the ProcessName argument is empty, the PID argument is used to identify the

process.

Request Message

“Message: ProcessStatus\nHost: \nRemoteMessage: \n”

Request Message Arguments

Argl (ProcessName) — Name of the process to get status on. Use Caution with this argument
because multiple versions of the same application may be running.
Arg2 (PID) — Process ID of the process to get status on.

Response Messages

1 "Message: Acknowledge\nProcessStatus: Running\nVER: 1\n”

2 "Message: Acknowledge\nProcessStatus: Stopped\nVER: 1\n”

3 "Message: Acknowledge\nNumRet: \n”

4 - Error “Message: Acknowledge\nProcessStatus: Unknown Process”

5 -Error "Message: Acknowledge\nProcessInfo: PID is invalid\n”

6 - Error "Message: Acknowledge\nProcessSearch: Unknown ProcessName\n”

ProcessStatus message process:

1) Client sends the ProcessStatus message with the required arguments.

2) Server receives the message and performs the function.

3) Server responds with a status message.

4) Client receives the status message.

ProcessSearch

Description: Find all processes given a process name and return the PID and Command line

arguments for each.

July 2020

Proprietary information of Curtiss Wright © 2020

129

T TADS #osrgemmns

Behavior: The Commander will search the process table for all occurrences of the process name.

Request Message

“Message: ProcessSearch\nProcessName: \n”

Request Message Arguments

Argl (ProcessName) — Name of the process to get status for. Use Caution with this argument
because multiple versions of the same application may be running.

Arg2 (PID) — Process ID of the process to get status on.

1 "Message: Acknowledge\nNumRet: 0\n”

2 "Message: Acknowledge\nNumRet: \nCmdArgs%d: \n\nPID%d: \n”

3 - Error “Message: Acknowledge\nProcessSearch: Unknown ProcessName\n”

Process Search message process:

1) Client sends the ProcessSearch message with the required Arguments.
2) Server receives the message and performs the function.

3) Server responds with a response message.

4) Client receives the response message.

TransferFile
Description: Transfer a file from one computer to another.

Behavior: Transfers configuration and various startup files.

Request Message

“Message: TransferFile\nNameAndPath: \nFileSize: \n”

Request Message Arguments

Argl (NameAndPath) - The location to write the file on the destination machine.

Arg2 (FileSize) - The total file size that will be transferred.

Response Messages

1 "Message: Acknowledge\nTransferStatus: Success creating file\n"

2 "Message: Acknowledge\nTransferStatus: Success transferring file\n"

3 - Error "Message: Acknowledge\nTransferFile: FileName is empty\n"

4 - Error "Message: Acknowledge\nTransferFile: FileSize is Empty\n"

5 - Error "Message: Acknowledge\nTransferStatus: File Size is less than or equal to zero\n"
6 - Error "Message: Acknowledge\nTransferStatus: Error creating file\n"

7 - Error "Message: Acknowledge\nTransferStatus: Unable to allocate file transfer buffer\n”
8 - Error "Message: Acknowledge\nTransferStatus: Unable to Recv file transfer buffer\n”

9 - Error "Message: Acknowledge\nTransferStatus: Error transferring file\n"

TransferFile message process:
1) The Client sends the TransferFile message with the required arguments.

2) The Server receives the message and waits in a socket receive for the file data.

July 2020 Proprietary information of Curtiss Wright © 2020 130

T TADS #osrgemmns

3) The Client receives the file creation message.
4) The Client sends the file.
5) The Server sends the response message.

6) The Client receives the response message.

Warning: Files will fail to transfer if the file size is greater than available contiguous memory.
Also, transferring files greater than 1MB is not recommended.

WritePermission

Description: Get the file permission for the given file.

Behavior: The Commander will return the permission of the given file.
Request Message

“Message: WritePermission\nNameAndPath: \n"

Request Message Arguments

Argl (NameAndPath) — Absolute file name and path. Please note that the entire message is
limited to 2000 characters.

Response Messages

1 "Message: Acknowledge\nWritePermission: ReadOnly\n"
2 "Message: Acknowledge\nWritePermission: Writeable\n”
3 - Error "Message: Acknowledge\nWritePermission: Filename is empty\n"

WritePermission message process:

1) The Client sends the WritePermission message with the required arguments.
2) The Commander receives the message and performs the function.

3) The Commander sends the response message.

4) The Client receives the response message.

TempPath
Description: Get the Windows temporary path for a remote machine.

Behavior: The Commander will return the Windows temporary path for the remote computer.
Request Message

“Message: TempPath\n”

Request Message Arguments

None

Response Messages

1 "Message: Acknowledge\nTempPath: <temporary path>\n"

TempPath message process:
1) The Client sends the TempPath message.
2) The Commander receives the message and performs the function.

July 2020 Proprietary information of Curtiss Wright © 2020 131

T TADS #osrgemmns

3) The Commander sends the response message.

4) The Client receives the response message.

SystemInfo
Description: Get certain Windows system information.

Behavior: The Commander will return certain system information for the remote computer.

Request Message

“Message: SystemInfo\n”

Request Message Arguments
None

Response Messages

1 " Message: Acknowledge\nSystemInfo: <disk size> <disk free> <total memory> <total
memory used> <total physical memory> <physical memory used> <number of CPUs>
<space separated list of CPU percentages>n"

SystemInfo message process:

1) The Client sends the SystemInfo message.

2) The Commander receives the message and performs the function on the remote machine.
3) The Commander sends the response message.

4) The Client receives the response message.

ProcessInfo
Description: Get certain Windows process information.

Behavior: The Commander will return the percentage CPU used for the process given the
process name (not recommended) or the PID if the process name is empty.

Request Message

“Message: ProcessInfo\n"

Request Message Arguments

None

Response Messages

1 "Message: Acknowledge\nProcessStatus: Stopped\n”

2 "Message: Acknowledge\nProcessInfo: <percentage cpu used>\n"
3 - Error "Message: Acknowledge\nProcessInfo: Error with allocation\n”

4 - Error "Message: Acknowledge\nProcessInfo: Process name is empty\n”
5 - Error "Message: Acknowledge\nProcessInfo: PID is invalid\n”

ProcessInfo message process:

1) The Client sends the ProcessInfo message.

2) The Commander receives the message and performs the function on the remote machine.
3) The Commander sends the response message.

July 2020 Proprietary information of Curtiss Wright © 2020 132

T TADS #osrgemmns

4) The Client receives the response message.

PathIsDirectory
Description: Check if the path sent from the Client is an actual path on the remote machine.

Behavior: The Commander will return True if the path string sent by the Client is an actual path
on the remote machine, otherwise False.

Request Message

“Message: "Message: PathIsDirectory\nPath: \n”

Request Message Arguments

(Path) — The path string to verify on the remote machine.

Response Messages

1 "Message: Acknowledge\nPathIsDirectory: True\n”

2 "Message: Acknowledge\nPathIsDirectory: False\n”

3 - Error "Message: Acknowledge\nPathIsDirectory: Invalid Path\n”

PathlsDirectory Message Process:

1) The Client sends the PathIsDirectory message.

2) The Commander receives the message and performs the function on the remote machine.
3) The Commander sends the response message.

4) The Client receives the response message.

MakeDirectory
Description: Create the directory given the path sent from the Client.

Behavior: The Commander will return Success if the path was created on the remote machine,
otherwise Failure.

Request Message

"Message: MakeDirectory\nPath: \n”

Request Message Arguments

(Path) — Path string to of directory to create on the remote machine.

Response Messages

1 "Message: Acknowledge\nMakeDirectory: SUCCESS\n”
2 "Message: Acknowledge\nMakeDirectory: FAILURE\n”
3 - Error "Message: Acknowledge\nMakeDirectory: Invalid Path\n”

MakeDirectory message process:

1) The Client sends the MakeDirectory message.

2) The Commander receives the message and performs the function on the remote machine.
3) The Commander sends the response message.

4) The Client receives the response message.

July 2020 Proprietary information of Curtiss Wright © 2020 133

T TADS #osrgemmns

DirectoryHasData

Description: Check if the path sent from the Client already contains IADS data.

Behavior: The Commander will return True if the Path has data contained within in it, otherwise
False.

Request Message

“Message: DirectoryHasData\nPath: \n”

Request Message Arguments

(Path) — Path string of directory to create on the remote machine.

Response Messages

1 "Message: Acknowledge\nDirectoryHasData: True\n”
2 "Message: Acknowledge\nDirectoryHasData: False\n”
3 - Error "Message: Acknowledge\nDirectoryHasData: Invalid Path\n”

DirectoryHasData message process:

1) The Client sends the DirectoryHasData message.

2) The Commander receives the message and performs the function on the remote machine.
3) The Commander sends the response message.

4) The Client receives the response message.

GetNextFreeDirectoryName
Description: The Commander will return a sequential backup directory name.

Behavior: The Commander will check the file system for the next available directory with a
number appended to the name.

Request Message

“Message: GetNextFreeDirectoryName\nPath: \n”

Request Message Arguments

(Path) — Path string of directory to create on the remote machine.

Response Messages

1 "Message: Acknowledge\nGetNextFreeDirectoryName: <next free directory name>\n”
2 "Message: Acknowledge\nGetNextFreeDirectoryName: FAILURE\n”
3 - Error "Message: Acknowledge\nGetNextFreeDirectoryName: Invalid Path\n”

GetNextFreeDirectoryName message process:

1) The Client sends the GetNextFreeDirectoryName message.

2) The Commander receives the message and performs the function on the remote machine.
3) The Commander sends the response message.

4) The Client receives the response message.

July 2020 Proprietary information of Curtiss Wright © 2020 134

T TADS #osrgemmns

FileExists
Description: The Commander will check if the file already exists on the remote machine.

Behavior: The Commander will check the existence of the file sent from the Client on the remote
computer.

Request Message

“Message: FileExists\nPath: \n"

Request Message Arguments

(File) — File name and path to check for existence on the remote machine.

Response Messages

1 "Message: Acknowledge\nFileExists: TRUE\n”
2 "Message: Acknowledge\nFileExists: FALSE\n”
3 - Error "Message: Acknowledge\nFileExists: Unable to determine if file specified\n”

FileExists message process:

1) The Client sends the FileExists message.

2) The Commander receives the message and performs the function on the remote machine.
3) The Commander sends the response message.

4) The Client receives the response message.

C++ Source Code Example

Note: This example is for demonstration purposes only and may not compile as written here.
Many languages, such as V, C#, C and C++ provide their own socket routines that will work
with the IADS Commander.

char inMsg[2000] = {'\O0'"} ;

char outMsg[2000] = {'\0'} ;

// Creates a socket connection to the IADS Commander

ClientSocket* clientSocket = new ClientSocket (port, host) ;

if(clientSocket == NULL)

{
printf ("Error: Socket Interface Creation Error...\n") ;
exit(1) ;

// Clients make an active connect

printf ("- Waiting to Connect to Service\n") ;
if(clientSocket->Connect(-1) ==)
{
printf ("Error Client Unable to make Active Connect...\n") ;

July 2020 Proprietary information of Curtiss Wright © 2020 135

T TADS #osrgemmns

exit(1) ;
}
printf ("- Client Connected...\n\n") ;
char file[MAX PATH] = {"c:\\SomePath\\SomeFile.txt"}

sprintf (outMsg, "Message: WritePermission\nNameAndPath: %$s\n", file) ;

// Let commander know what's coming...
printf (" Send Message:\n%s", outMsg) ;
if(clientSocket->Send(outMsg, 2000) ==)
{
printf ("ClientWorkstation - Connection Terminted...\n") ;

break ;

// Receive Response from the IADS Commander

printf ("- Wait to Receive Acknowledge from Server...\n") ;
if(clientSocket->Recv(inMsg, 2000) == utFailure)
{

printf ("- Client Connection Terminted...\n") ;

break ;

}

// Disconnect from the IADS Commander

delete clientSocket ;

7.2.2 The CDS Command Server

The CDS Command server is included as a capability within the CDS process. The CDS is part
of the IADS Real-time system to be installed on the computer designated as the IADS Server.
The purpose of the CDS Command server is to provide a socket-based interface to control the
running operation of the CDS and provide various status information. There is a full set of
commands to control the CDS application to perform functions such as; IADS configuration file
validation, start data acquisition and stop data acquisition. In addition there is a full set of status
commands such as; time validation state, processing status, and information about the upstream
data source. The CDS Command server utilizes the TCP/IP protocol therefore the EUCCA will
make an active connection and behave as a client making requests and receiving message replies
from the Command server.

Setup Information

Field Entry/Selection

Connection Port 58001
Connection Type TCP/IP

July 2020 Proprietary information of Curtiss Wright © 2020 136

CURTISS -

INDS.

IADS Programming

WRIGHT User Guide
Protocol
e Client performs a send on the socket
e The CDS Command Server performs the function and sends back a response message
e Client performs a receive on the socket to retrieve the response message
e The CDS does not guarantee a response message to be null terminated.
CDS Messages Overview
Initialization Commands and Information
StartConnectTest Command the CDS to begin the test
IsCdsDataSourceConnectTestCompleted Check if the test is still running
GetCdsDataSourceConnectTestInfoString Return information from the test
GetCdsDataSourceConnectTestResult Return test results
GetCdslnitlnfo State of CDS initialization
GetCdslnitInfoString Return information from the process
StartConfigValidationFromFile Start config validation from start file
IsValidationComplete State of validation processing
GetConfigValidatelnfo State of validation success
GetValidationStatusString Return information from the process
Data Acquisition Commands and Information
StartData Start CDS data acquisition
RestartCds Perform a CDS recovery
ResetCdsWithAppend Reset the CDS and append data
ResetCdsWithSave Reset the CDS and save
ResetCdsWithoutSave Reset the CDS without saving
ResetCdsWithAppendBlocked Reset the CDS with append blocked
ResetCdsWithSaveBlocked Reset the CDS with save blocked
ResetCdsWithoutSaveBlocked Reset the CDS without save blocked
IsDataStarted Return data acquisition status
GetCdsDataGatherInfoString Return information from the process
Stopping Data
StopData Stop CDS data acquisition
IsStopDataComplete Return stop data acquisition status
GetCdsStopInfoString Return information from the process
Time Information
IsTimeValidated Return time validation status
GetCdsTimeValidationInfoString Return information from the process
GetlrigTime Return current IRIG time from CDS
July 2020 Proprietary information of Curtiss Wright © 2020 137

CURTISS -

INDS.

IADS Programming

WRIGHT User Guide
Archiving
StartDataArchiving Start data archiving
StartDataArchivingWithAppend Start data archiving with append
StopDataArchiving Stop data archiving
ResetDataArchiving Reset data archiving
ResetDataArchivingWithAppend Reset data archiving with append
IsDataArchiving Return data archiving status
Nulling
StartAircraftNulling Start aircraft nulling
IsAircraftNulling Return aircraft nulling status
StartWeaponsBayNulling Start weapons bay nulling
IsWeaponsBayNulling Return weapons bay nulling status
Data Compression
StartDataCompression Start data compression
IsDataCompressionRunning Return state of process
GetDataCompressionStatus Return data compression status
GetDataCompressionError Return information from the process
StopDataCompression Stop data compression
Shutdown
Shutdown Shutdown CDS
Run State
GetCdsStartInfo Return status of CDS start command
GetCdsStopInfo Return status of CDS stop command
GetPredictedAggRate Return predicted aggregate rate
Data Source Information
GetSys500Info Not yet documented
GetSys500DecomStatus Not yet documented
GetOmegalnfo Return Omega information
GetOmegaDecomStatus Return Omega decom status
GetVistalnfo Not yet documented
GetVistaDecomStatus Not yet documented
GetS6200 Not yet documented
GetS6200DecomStatus Not yet documented
GetMCSlnfo Not yet documented
GetMCSDecomStatus Not yet documented
GetCustomDSInfo Not yet documented
GetCustomDSDecomStatus Not yet documented
GetDatalnterfacelnfo Not yet documented
GetDecomStatus Not yet documented

July 2020 Proprietary information of Curtiss Wright © 2020 138

T TADS #osrgemmns

System Wide Information

GetCdsSystemlInfo Return certain system information
GetFrontEndType Return primary front end type
GetNumberDecomStreams Return the number of decom streams for the

primary front end

GetBaseDataSourcelnfo Return active data source information

7.2.3 Initialization Commands and Information

StartConnectTest
Description: Command the CDS to begin a connect test to the upstream data source computer.

Behavior: The CDS will send a response message before the connect test is initiated. A failure
condition is triggered if the CDS had already initiated a connect test in the past when the
command is received. This message is not necessary for the CDS to successfully run.
Subsequently use the “IsCdsDataSourceConnectTestComplete” to determine the state of the
connect test.

Request Message

“StartConnectTest”

Response Messages

1 "StartConnectTest ok

2 - Error "StartConnectTest failure Connect Test is already running”

StartConnectTest message process:

1) The Client sends the StartConnectTest message.

2) The CDS receives the message and responds back to the Client.
3) The CDS performs the function.

4) The Client receives the response message.

IsCdsDataSourceConnectTestCompleted
Description: Check if a CDS connect test has been completed.

Behavior: The CDS will send a response message of true if the connect test has completed,
otherwise false.

Request Message

"IsCdsDataSourceConnectTestCompleted"

Response Messages

1 “IsCdsDataSourceConnectTestCompleted ok <true, false>”

IsCdsDataSourceConnectTestCompleted message process:
1) The Client sends the IsCDSDataSourceConnectTestCompleted message.

2) The CDS receives the message, checks the status of the connect test and responds to the
Client.

July 2020 Proprietary information of Curtiss Wright © 2020 139

T TADS #osrgemmns

3) The Client receives the response message.

GetCdsDataSourceConnectTestInfoString
Description: Get information on the results of the CDS connect test.

Behavior: The CDS will send a response message with information about the connect test that
was performed. Use this to obtain more detail on the connect test results.

Request Message

"GetCdsDataSourceConnectTestInfoString"

Response Messages

1 “GetCdsDataSourceConnectTestInfoString ok <information string>"
2 “GetCdsDataSourceConnectTestInfoString ok NULL”

GetCdsDataSourceConnectTestInfoString message process:
1) The Client sends the GetCdsDataSourceConnectTestInfoString message.
2) The CDS receives the message and returns the connect test information string.

3) The Client receives the message.

GetCdsDataSourceConnectTestResult
Description: Get information on the results of the CDS connect test.

Behavior: The CDS will send a response message with results on the connect test that was
performed. Use this after sensing the connect test has completed to determine whether the
connect test succeeded (true) or failed (false) along with additional information upon failure.

Request Message

"GetCdsDataSourceConnectTestResult"

Response Messages

1 “GetCdsDataSourceConnectTestResult ok false <code> <failure result string>"

2 “GetCdsDataSourceConnectTestResult ok <true, false>"

Note: Response message 2 can be false only if command is sent prior to completion of connect
test.

GetCdsDataSourceConnectTestResult message process:
1) The Client sends the GetCdsDataSourceConnectTestResult message.
2) The CDS receives the message and returns the connect test result string.

3) The Client receives the message.

GetCdsInitInfo

Description: The Client sends this command to retrieve CDS initialization state information,
specifically status on initialization completion and success.

Behavior: The CDS will send an ok token followed by two value strings of either “true” or
“false”. The first specifies status on initialization completion and the second states the
initialization success result.

July 2020 Proprietary information of Curtiss Wright © 2020 140

T TADS #osrgemmns

Request Message

"GetCdslInitInfo"

Response Messages

1 “GetCdslnitInfo ok <true, false> <true, false>” Example: “GetCdsInitInfo ok true true”

GetCdsInitInfo message process:
1) The Client sends the GetCdsInitInfo message.
2) The CDS receives the message and returns the initialization string.

3) The Client receives the message.

GetCdsInitInfoString

Description: The Client sends this command to retrieve the CDS initialization information string.
This may provide more detail on the results of the initialization performed.

Behavior: The CDS will send an ok token followed by either a NULL string if nothing is
available or the information string.

Request Message
"GetCdsInitInfoString"

Response Messages

1 “GetCdsInitInfoString ok <Information string>"
2 “GetCdslnitInfoString ok NULL”

GetCdsInitInfoString message process:
1) The Client sends the GetCdsInitInfoString message.
2) The CDS receives the message and returns the initialization information string.

3) The Client receives the message.

StartConfigValidationFromFile
Description: Start the configuration validation process.
Behavior: The CDS will send an Ok or Failure Response message immediately upon receipt of
this command. A failure condition is triggered when the CDS is already in an active data
acquisition state when the command is received. Additional messages will need to be sent to
query validation state and results. This step is mandatory in order for the CDS to operate
properly.

Request Message

“StartConfigValidationFromFile”

Response Messages

1 “StartConfigValidationFromFile ok”

2-Error “StartConfigValidationFromFile failure CDS currently running”

StartConfigValidationFromFile Message Process:

July 2020 Proprietary information of Curtiss Wright © 2020 141

T TADS #osrgemmns

1) The Client sends the StartConfigValidationFromFile message.
2) The CDS receives the message and returns a status before performing the validation.

3) The Client receives the message.

IsValidationComplete

Description: The Client sends this command to check the completion state of the config
validation process.

Behavior: The CDS will send an Ok string followed by a true or false string depending if the
validation is complete or not.

Request Message

“IsValidationComplete”

Response Messages

1 “IsValidationComplete ok <true, false>”

IsValidationComplete message process:

1) The Client sends the IsValidationComplete message.

2) The CDS receives the message and returns a status of the validation process.
3) The Client receives the message.

GetConfigValidateInfo

Description: The Client sends this command to retrieve status whether the CDS has successfully
performed validation.

Behavior: The CDS will send an Ok string followed by a true or false string depending if the
config successfully validated or not.

Request Message
“GetConfigValidateInfo”

Response Messages

1 “GetConfigValidateInfo ok <true, false>"

GetConfigValidateInfo message process:

1) The Client sends the GetConfigValidateInfo message.

2) The CDS receives the message and returns a status of the validation success.
3) The Client receives the message.

GetValidationStatusString

Description: The Client sends this command to retrieve the result string from the validation
process. Typically, this is used to obtain additional information when validation failures occur.

Behavior: The CDS will send an Ok string followed by either NULL if no status string is
available or the validation string.

July 2020 Proprietary information of Curtiss Wright © 2020 142

T TADS #osrgemmns

Request Message

“GetValidationStatusString”

Response Messages
1 “GetValidationStatusString ok <status string>"
2 - Error “GetValidationStatusString ok NULL”

GetValidationStatusString message process:
1) The Client sends the GetValidationStatusString message.
2) The CDS receives the message and returns the validation string.

3) The Client receives the message.

7.2.4 Data Acquisition Commands and Information

StartData
Description: The client sends this command to start the CDS data acquisition.

Behavior: The CDS will send an “ok” token with nothing following when the CDS is in a state
ready to start data acquisition otherwise a failure token is sent if the CDS is already in a data
acquisition state. The CDS will send the response before the start is initiated in order not to block
the requestor. A failure condition is triggered if the CDS is already in an active data acquisition
state when the command is received. This command is required in order to run the CDS and
gather data for real time operations.

Request Message

“StartData”

Response Messages

1 “StartData ok”

2 - Error “StartData failure Data is already running”

StartData message process:

1) The Client sends the “StartData” message.

2) The CDS receives the message and returns a response before initiating the start.
3) The Client receives the message.

RestartCDS

Description: The requestor sends this command to perform a CDS recovery. A recovery is
defined as restarting the CDS from scratch but maintaining some states from the previous run
such as null bias values along with bypassing certain initialization operations including IADS
configuration file validation. All subsequent data archiving is appended to the same archive files
created prior to the recovery action. Time validation is performed.

Behavior: The CDS will send an “ok” token upon success otherwise a “failure” token is sent.
The CDS will send the response message before the restart is initiated in order not to block the
requestor. A failure condition is triggered if the CDS is already in an active data acquisition state
when the command is received.

July 2020 Proprietary information of Curtiss Wright © 2020 143

T TADS #osrgemmns

Request Message

“RestartCds”

Response Messages

1 “RestartCds ok”

2 - Error “RestartCds failure Data is already running”

RestartCDS message process:

1) The Client sends the “RestartCds” message.

2) The CDS receives the message and returns a response before initiating the recovery action.
3) The Client receives the message.

Warning: This command may only be used immediately after execution — NO COMMAND
MAY PROCEED THIS COMMAND EXCEPT GetCdslnitInfo. If any other command is used
out of order prior to this, the CDS will not be in “recovery” mode.

ResetCdsWithAppend

Description: The Client sends this command to perform a CDS reset. On a reset the CDS stays in
a running state but suspends the data acquisition connection while flushing all data to disk
following by resuming the data acquisition process and reapplying time validation. Config file
validation is not performed. All subsequent data archiving will be appended to the existing
archive files.

Behavior: The CDS will send an Ok token with nothing following on success otherwise a failure
token is sent. The CDS will send the response message before the start is initiated in order not to
block the requestor. A failure condition is triggered if the CDS is not in an active data acquisition
state when the command is received.

Request Message
“ResetCdsWithAppend”

Response Messages
1 “ResetCdsWithAppend ok”
2-Error “ResetCdsWithAppend failure Data is already running”

ResetCdsWithAppend message process:

1) The Client sends the “ResetCdsWithAppend” message.

2) The CDS receives the message and returns a response before initiating the reset.
3) The Client receives the message.

ResetCdsWithSave

Description: The Client sends this command to perform a CDS reset. On a reset the CDS stays in
a running state but suspends the data acquisition connection while flushing all data to disk
following by resuming the data acquisition process and reapplying time validation. Config file
validation is not performed. The current archive folder is renamed by appending “RestoredN” to
the folder name where N is the next unused number starting at 1. A new archive folder will be

July 2020 Proprietary information of Curtiss Wright © 2020 144

T TADS #osrgemmns

created using the original name populated with the archive support files from the original folder
and new archive data files will be created.

Behavior: The CDS will send an Ok token with nothing following on success otherwise a failure

token is sent. The CDS will send the response message before the reset is initiated in order not to
block the requestor. A failure condition is triggered if the CDS is not in an active data acquisition
state when the command is received.

Request Message

“ResetCdsWithSave”

Response Messages

1 “ResetCdsWithSave ok”
2 - Error “ResetCdsWithSave failure Data is already running”

Message Process:

1) The Client sends the “ResetCdsWithSave” message.

2) The CDS receives the message and returns a response before initiating the reset.
3) The Client receives the message.

ResetCdsWithoutSave

Description: The Client sends this command to perform a CDS reset. On a reset the CDS stays in
a running state but suspends the data acquisition connection while flushing all data to disk
following by resuming the data acquisition process and reapplying time validation. Config file
validation is not performed. The currently saved data will be discarded and the archive files will
be truncated.

Behavior: The CDS will send an Ok token with nothing following on success otherwise a failure
token is sent. The CDS will send the response message before the reset is performed in order to
not block the requestor. A failure condition is triggered if the CDS is not in an active data
acquisition state when the command is received.

Request Message

“ResetCdsWithoutSave”

Response Messages

1 “ResetCdsWithoutSave ok”

2-Error “ResetCdsWithoutSave ok failure Data is already running”

ResetCdsWithoutSave message process:

1) The Client sends the “ResetCdsWithoutSave” message.

2) The CDS receives the message and returns a response before initiating the reset.
3) The Client receives the message.

ResetCdsWithAppendBlocked

Description: The Client sends this command to perform a CDS reset. On a reset the CDS stays in
a running state but suspends the data acquisition connection while flushing all data to disk
following by resuming the data acquisition process and reapplying time validation. Config file

July 2020 Proprietary information of Curtiss Wright © 2020 145

T TADS #osrgemmns

validation is not performed. All subsequent data archiving will be appended to the existing
archive files.

Behavior: The CDS will send an Ok token with nothing following on success otherwise a failure
token is sent. The CDS will delay sending the response message until after the reset is completed
blocking the requester in the process. A failure condition is triggered if the CDS is not in an
active data acquisition state when the command is received.

Request Message

“ResetCdsWithAppendBlocked” (Reset performed before response)

Response Messages

1 “ResetCdsWithAppendBlocked ok”
2 - Error “ResetCdsWithAppendBlocked failure Data is already running”

ResetCdsWithAppendBlocked message process:

1) The Requestor sends the “ResetCdsWithAppendBlocked” message.

2) The CDS receives the message and returns a response after completing the reset.
3) The Requestor receives the message.

ResetCdsWithSaveBlocked

Description: The Client sends this command to perform a CDS reset. On a reset the CDS stays in
a running state but suspends the data acquisition connection while flushing all data to disk
following by resuming the data acquisition process and reapplying time validation. Config file
validation is not performed. The current archive folder is renamed by appending “RestoredN” to
the folder name where N is the next unused number starting at 1. A new archive folder will be
created using the original name populated with the archive support files from the original folder
and new archive data files will be created.

Behavior: The CDS will send an Ok token with no other tokens following on success otherwise a
failure token is sent. The CDS will delay sending the response message until after the reset is
completed blocking the requestor in the process. A failure condition is triggered if the CDS is not
in an active data acquisition state when the command is received.

Request Message

“ResetCdsWithSaveBlocked”

Response Messages
1 “ResetCdsWithSaveBlocked ok”
2-Error “ResetCdsWithSaveBlocked failure Data is already running”

ResetCdsWithSaveBlocked message process:

1) The Client sends the “ResetCdsWithSaveBlocked” message.

2) The CDS receives the message and returns a response after completing the reset.
3) The Client receives the message.

July 2020 Proprietary information of Curtiss Wright © 2020 146

T TADS #osrgemmns

ResetCdsWithoutSaveBlocked

Description: The Client sends this command to perform a CDS reset. On a reset the CDS stays in
a running state but suspends the data acquisition connection while flushing all data to disk
following by resuming the data acquisition process and reapplying time validation. Config file
validation is not performed. The currently saved data will be discarded and the archive files will
be truncated.

Behavior: The CDS will send an Ok token with nothing following on success otherwise a failure
token is sent. The CDS will send the response message after the reset is performed blocking the
requestor in the process. A failure condition is triggered if the CDS is not in an active data
acquisition state when the command is received.

Request Message

“ResetCdsWithoutSaveBlocked”

Response Messages

1 “ResetCdsWithoutSaveBlocked ok™

2 - Error “ResetCdsWithoutSaveBlocked failure Data is already running”

ResetCdsWithoutSaveBlocked message process:

1) The Client sends the “ResetCdsWithoutSaveBlocked” message.

2) The CDS receives the message and returns a response after completing the reset.
3) The Client receives the message.

IsDataStarted

Description: The Client sends the command to determine whether CDS data acquisition has been
started.

Behavior: The CDS will send the “ok” token with either a “true” token if data is started or a
“false” token if data is not started.

Request Message
“IsDataStarted”

Response Messages

1 “IsDataStarted ok <true, false>"

IsDataStarted message process:

1) The Client sends the “IsDataStarted” message.

2) The CDS receives the message and returns a response.

3) The Client receives the message.

GetCdsDataGatherInfoString

Description: The Requestor sends this command to obtain data gather information from the CDS.

Behavior: The CDS will send the “ok” token followed by the information string or “NULL”
token if no information is available.

Request Message
“GetCdsDataGatherInfoString”

July 2020 Proprietary information of Curtiss Wright © 2020 147

T TADS #osrgemmns

Response Messages

1 “GetCdsDataGatherInfoString ok <information string>"
2 “GetCdsDataGatherInfoString ok NULL”

GetCdsDataGatherInfoString message process:

1) The Client sends the “GetCdsDataGatherInfoString” message.
2) The CDS receives the message and returns a response.

3) The Client receives the message.

7.2.5 Stopping Data Command and Information

StopData

Description: The Client sends this command to stop the CDS data acquisition. All data
acquisition and processing activities will be discontinued. All data not currently archived will be
flushed to disk.

Behavior: The CDS will send an “ok” token on success otherwise a failure token is sent. The
CDS will send the response before the stop is initiated in order not to block the requestor. A
failure condition is triggered if the CDS is not in an active data acquisition state when the
command is received.

Request Message

“StopData”

Response Messages

1 “StopData ok”

2-Error “StopData failure Data is not currently running”

StopData message process:

1) The Requestor sends the “StopData” message.

2) The CDS receives the message and returns a response before initiating the stop.

3) The Requestor receives the message.

IsStopDataComplete

Description: The Client sends this command to check if the CDS has stopped data acquisition.

Behavior: The CDS will send the “ok” token followed by either a “true” token if data is stopped
or a “false” token if data is not stopped.

Request Message

“IsStopDataComplete”

Response Messages

1 “IsStopDataComplete ok <true, false>"

IsStopDataComplete message process:
1) The Client sends the “IsStopDataComplete” message.
2) The CDS receives the message and returns a response.

July 2020 Proprietary information of Curtiss Wright © 2020 148

T TADS #osrgemmns

3) The Client receives the message.
GetCdsStopInfoString

Description: The Client sends this command to get the stop data status information string from
the CDS.

Behavior: The CDS will send the “ok” token followed by either the information string or
“NULL” token if no information is available.

Request Message
“GetCdsStopInfoString”

Response Messages
1 “GetCdsStopInfoString ok NULL”
2 “GetCdsStopInfoString ok <information string>"

GetCdsStopInfoString message process:
1) The Client sends the “GetCdsStopInfoString” message.
2) The CDS receives the message and returns a response.

3) The Client receives the message.

7.2.6 Time Information

IsTimeValidated

Description: The Requestor sends this command to check if the CDS has successfully validated
the upstream data source time flow.

Behavior: The CDS will send the “ok” token followed by either a “true” token if the data source
time validation succeeded or a “false” token if not.

Request Message

“IsTimeValidated”

Response Messages

1 “IsTimeValidated ok <true, false>"

IsTimeValidated message process:

1) The Client sends the “IsTimeValidated” message.

2) The CDS receives the message and returns a response.

3) The Client receives the message.

GetCdsTimeValidationInfoString

Description: The Client sends this command to time validation information string from the CDS.

Behavior: The CDS will send the “ok” token followed by the information string or “NULL”
token if no information is available.

July 2020 Proprietary information of Curtiss Wright © 2020 149

T TADS #osrgemmns

Request Message

“GetCdsTimeValidationInfoString”

Response Messages

1 “GetCdsTimeValidationInfoString ok NULL”

2 “GetCdsTimeValidationInfoString ok <information string>"

GetCdsTimeValidationInfoString message process:

1) The Client sends the “GetCdsTimeValidationInfoString” message.

2) The CDS receives the message and returns a response.

3) The Client receives the message.

GetIRIGTime

Description: The Requestor sends this command to retrieve the current IRIG time from the CDS.

Behavior: The CDS will send the “ok’ token followed by the IADS IRIG time string. The
returned IRIG string format is DDD:HH:MM:SS.sss.

Request Message

“GetIRIGTime”

Response Messages

1 “GetIRIGTime ok <IRIG time string>"

GetIRIGTime message process:

1) The Client sends the “GetIRIGTime” message.

2) The CDS receives the message and returns a response.
3) The Client receives the message.

7.2.7 Archiving Commands and Information

StartDataArchiving

Description: The Client sends this command to start data archiving. Any previously saved data
will be discarded and the archive data files will be truncated.
Behavior: The CDS will send an “ok” token on success otherwise a failure token is sent. The
CDS will send the response after the data archiving is initiated. A failure condition is triggered if
the CDS is already in an active data archiving state when the command is received.

Request Message

“StartDataArchiving”

Response Messages

1 “StartDataArchiving ok Data archiving is now active”

2-Error “StartDataArchiving failure Data archiving is already active”

StartDataArchiving message process:
1) The Client sends the “StartDataArchiving” message.
2) The CDS receives the message and starts data archiving.

July 2020 Proprietary information of Curtiss Wright © 2020 150

T TADS #osrgemmns

3) The CDS sends a response message.

4) The Client receives the message.
StartDataArchivingWithAppend

Description: The Client sends this command to start data archiving. All subsequent data
archiving will be appended to the existing archive files.

Behavior: The CDS will send an “ok” token on success otherwise a failure token is sent. The
CDS will send the response after the data archiving is initiated. A failure condition is triggered if
the CDS is already in an active data archiving state when the command is received.

Request Message

“StartDataArchivingWithAppend”

Response Messages
1 “StartDataArchivingWithAppend ok Data archiving is now active”
2 - Error “StartDataArchivingWithAppend failure Data archiving is already active”

StartDataArchivingWithAppend message process:

1) The Client sends the “StartDataArchivingWithAppend” message.
2) The CDS receives the message and starts data archiving.

3) The CDS sends a response message.

4) The Client receives the message.

StopDataArchiving

Description: The Client sends this command to stop data archiving. All data not currently
archived will be flushed to disk and the CDS will discontinue saving data.

Behavior: The CDS will send an “ok” token on success otherwise a failure token is sent. The
CDS will send the response after flushing the data and archiving is stopped. A failure condition
is triggered if the CDS is not in an active data archiving state when the command is received.

Request Message

“StopDataArchiving”

Response Messages

1 “StopDataArchiving ok Data archiving is now inactive”

2-Error “StopDataArchiving failure Data archiving is already inactive”

StopDataArchiving message process:

1) The Requestor sends the “StopDataArchiving” message.
2) The CDS receives the message and stops data archiving.
3) The CDS sends a response message.

4) The Requestor receives the message.

ResetDataArchiving

July 2020 Proprietary information of Curtiss Wright © 2020 151

T TADS #osrgemmns

Description: This commands the CDS to stop data archiving followed by restarting data
archiving. Any saved data will be discarded and the archive data files will be truncated.

Behavior: The CDS will send an “ok” token after data archiving has been fully stopped and the
restart of data archiving has been initiated.

Request Message

“ResetDataArchiving”

Response Messages

1 “ResetDataArchiving ok Data archiving is now active”

ResetDataArchiving message process:

1) The Requestor sends the “ResetDataArchiving” message.
2) The CDS receives the message and resets data archiving.
3) The CDS sends a response message.

4) The Requestor receives the message.
ResetDataArchivingWithAppend

Description: This commands the CDS to stop data archiving followed by restarting data
archiving. All subsequent data archiving will be appended to the existing archive files.

Behavior: The CDS will send an “ok” token after data archiving has been fully stopped and the
restart of data archiving has been initiated.

Request Message

“ResetDataArchivingWithAppend”

Response Messages

1 “ResetDataArchivingWithAppend ok Data archiving is now active”

ResetDataArchivingWithAppend message process:

1) The Requestor sends the “ResetDataArchivingWithAppend” message.
2) The CDS receives the message and resets data archiving.

3) The CDS sends a response message.

4) The Requestor receives the message.

IsDataArchiving

Description: This command will check if the CDS is archiving data.

Behavior: The CDS will send an “ok™ token along with a true token if data is currently being
archived, otherwise a false token is returned.

Request Message

“IsDataArchiving”

Response Messages

1 “IsDataArchiving ok <true, false>"

Message Process:

July 2020 Proprietary information of Curtiss Wright © 2020 152

T TADS #osrgemmns

1) The Requestor sends the “IsDataArchiving” message.

2) The CDS sends a response message.
3) The Requestor receives the message.

7.2.8 Nulling Commands and Information

StartAircraftNulling

Description: This commands the CDS to start Aircraft group nulling. The CDS will collect 15
seconds worth of data for all parameters within the Aircraft nulling group, compute the average
value over that time span then calculate the bias based on the difference between the baseline and
average values and update the config with the results.

Behavior: The CDS will send an “ok” token on success otherwise a failure token is sent. The
CDS will send the response after initiating the nulling process in order to not block the requestor.
A failure condition is triggered if the CDS is unable to initiate the nulling process due to system
error.

Request Message

“StartAircraftNulling”

Response Messages

1 “StartAircraftNulling ok Nulling sequence is now started”

2 - Error “StartAircraftNulling failure Nulling sequence could not be started”

StartAircraftNulling Message Process:

1) The Requestor sends the “StartAircraftNulling” message.
2) The CDS sends a response message.

3) The Requestor receives the message.

IsAircraftNulling

Description: The Client sends this command to check whether the CDS has completed Aircraft
group nulling.

Behavior: The CDS will send an “ok” token along with a true token if Aircraft group nulling has
been completed, otherwise a false token is returned.

Request Message

“IsAircraftNulling”

Response Messages

1 “IsAircraftNulling ok <true, false>"

IsAircraftNulling message process:

1) The Requestor sends the “IsAircraftNulling” message.
2) The CDS sends a response message.

3) The Requestor receives the message.
StartWeaponsBayNulling

July 2020 Proprietary information of Curtiss Wright © 2020 153

T TADS #osrgemmns

Description: This commands the CDS to start Weapons Bay nulling. The CDS will collect 15
seconds worth of data for all parameters within the Weapons Bay nulling group, compute the
average value over that time span then calculate the bias based on the difference between the
baseline and average values and update the config with the results.

Behavior: The CDS will send an “ok” token on success otherwise a failure token is sent. The
CDS will send the response after initiating the nulling process in order to not block the requestor.
A failure condition is triggered if the CDS is unable to initiate the nulling process due to system
error.

Request Message

“StartWeaponsBayNulling”

Response Messages
1 “StartWeaponsBayNulling ok Nulling sequence is now started”
2 - Error “StartWeaponsBayNulling failure Nulling sequence could not be started”

StartWeaponsBayNulling message process:

1) The Requestor sends the “StartWeaponsBayNulling” message.
2) The CDS sends a response message.

3) The Requestor receives the message.

IsWeaponsBayNulling

Description: The Client sends this command to check whether the CDS has completed Weapons
Bay group nulling.

Behavior: The CDS will send an “ok” token along with a true token if Weapons Bay group
nulling has been completed, otherwise a false token is returned.

Request Message

“IsWeaponsBayNulling”

Response Messages

1 “IsWeaponsBayNulling ok <true, false>”

IsWeaponsBayNulling message process:
1) The Requestor sends the “IsWeaponsBayNulling” message.
2) The CDS sends a response message.
3) The Requestor receives the message.

7.2.9 Data Compression Commands and Information

StartDataCompression

Description: This command will cause the CDS to start building a zip file of the IADS data
archive.

Behavior: The CDS will return a “Starting” message to the requestor.

Request Message
“StartDataCompression”

July 2020 Proprietary information of Curtiss Wright © 2020 154

T TADS #osrgemmns

Response Messages

1 “StartDataCompression ok Starting”

2-Error “StartDataCompression failure Already Running”

StartDataCompression message process:

1) The Requestor sends the “StartDataCompression” message.

2) The CDS sends a response message after starting the compression.
3) The Requestor receives the message.
IsDataCompressionRunning

Description: This command will cause the CDS to return if the data compression is running and
at what state.

Behavior: The CDS will return a true token and the particular process status or a False token of
the compression is finished.

Request Message

“IsDataCompressionRunning”

Response Messages

1 “IsDataCompressionRunning True Compressing”
2 “IsDataCompressionRunning True Building”

3 “IsDataCompressionRunning True Copying”

4 “IsDataCompressionRunning False Finished”

IsDataCompressionRunning message process:

1) The Requestor sends the “IsDataCompressionRunning” message.

2) The CDS sends a response message.

3) The Requestor receives the message.

GetDataCompressionStatus

Description: This command will cause the CDS to return the data compression processing status.

Behavior: The CDS will return a true token and the particular process status or a False token of
the compression is finished.

Request Message

“GetDataCompressionStatus”

Response Messages

1 “GetDataCompressionStatus Ok <TotalFilesToCompress, TotalFilesCompressed>"

GetDataCompressionStatus Message Process:

1) The Requestor sends the “GetDataCompressionStatus” message.
2) The CDS sends a response message.

3) The Requestor receives the message.
GetDataCompressionError

July 2020 Proprietary information of Curtiss Wright © 2020 155

T TADS #osrgemmns

Description: This command will cause the CDS to return the data compression error string.

Behavior: The CDS will return a “True” token followed by the error string if an error did occur;
otherwise a “False” token is sent indicating no error.

Request Message

“GetDataCompressionError”

Response Messages

1 “GetDataCompressionError ok True <Error String>"

2 “GetDataCompressionError ok False”

GetDataCompressionError message process:

1) The Requestor sends the “GetDataCompressionError” message.
2) The CDS sends a response message.

3) The Requestor receives the message.

StopDataCompression

Description: This command will cause the CDS to start building a zip file of the IADS data
archive.

Behavior: The CDS will return a “Stopping” message back to the requestor.
Request Message

“StopDataCompression”

Response Messages

1 “StopDataCompression ok Stopping”

2 - Error “StopDataCompression failure Already Stopped”

3 - Error “StopDataCompression failure Stop command rejected”

StopDataCompression message process:

1) The Requestor sends the “StopDataCompression” message.

2) The CDS sends a response message after stopping the compression.

3) The Requestor receives the message.

ShutDown

Description: This commands the CDS to gracefully shutdown and exit the application.

Behavior: The CDS will return an “ok” token back to the requestor prior to initiating the
shutdown.

Request Message

“ShutDown”

Response Messages

1 “ShutDown ok”

ShutDown message process:
1) The Requestor sends the “ShutDown’ message.

July 2020 Proprietary information of Curtiss Wright © 2020 156

T TADS #osrgemmns

2) The CDS sends a response message before shutting down and exiting.

3) The Requestor receives the message.

7.2.10 Run State Information

GetCdsStartInfo

Description: This commands the CDS to return the completion and success status of the CDS
data acquisition startup process initiated by the “StartData” command.

Behavior: The CDS will return an “ok” token followed by two status tokens representing CDS
data acquisition startup process completion and success with the former stating “true” if the CDS
has completed the data start process, otherwise “false” and the latter stating “true” if the CDS
data start process was successful, otherwise “false”.

Request Message

“GetCdsStartInfo”

Response Messages

1 “GetCdsStartInfo ok <true, false> <true, false>"

GetCdsStartInfo message process:

1) The Requestor sends the “GetCdsStartInfo” message.
2) The CDS sends a response message.

3) The Requestor receives the message.
GetCdsStopInfo

Description: This commands the CDS to return the completion status of the CDS stop data
acquisition process initiated by the “StopData” or “ShutDown” commands.

Behavior: The CDS will return an “ok” token followed by “true” if the CDS has completed the
data stop process, otherwise “false”.

Request Message
“GetCdsStopInfo”

Response Messages

1 “GetCdsStoplInfo ok <true, false>"

GetCdsStopInfo message process:

1) The Requestor sends the “GetCdsStopInfo” message.
2) The CDS sends a response message.

3) The Requestor receives the message.
GetPredictedAggRate

Description: This commands the CDS to return the predicted aggregate sample rate of the active
data source parameters being processed by the CDS based on the ParameterDefaults table of the
configuration file.

Behavior: The CDS will return an “ok” token followed by the predicted aggregate rate.

July 2020 Proprietary information of Curtiss Wright © 2020 157

T TADS #osrgemmns

Request Message

“GetPredictedAggRate”

Response Messages

1 “GetPredictedAggRate ok <Predicted Aggregate Rate>"

GetPredictedAggRate Message Process:
1) The Requestor sends the “GetPredictedAggRate” message.
2) The CDS sends a response message.

3) The Requestor receives the message.

7.2.11 Data Source Information

GetOmegalnfo

Description: This commands the CDS to return data flow information when attached to an
Omega 3000 data source.

Behavior: The CDS will return an “ok” token followed by four tokens: the overflow count
returned from the data source to the Omega IOM during data packet reads, the aggregate sample
count from all data packets received up to this point, the aggregate data packet count and the
actual sample rate aggregate from the data source.

Request Message

“GetOmegalnfo”

Response Messages

1 “GetOmegalnfo ok <Overflow count> <Sample count> <Buffer Count> <Aggregate
sample rate>"

GetOmegalnfo message process:

1) The Requestor sends the “GetOmegalnfo” message.
2) The CDS sends a response message.

3) The Requestor receives the message.
GetOmegaDecomStatus

Description: This commands the CDS to return the values of all decom status words defined in
the active parameter list of the upstream Omega project.

Behavior: The CDS will return an “ok” token along with the total number of decom status words
followed by a series of stream names and raw status words for each instance separated by “|”.

Request Message

“GetOmegalnfo”

Response Messages

1 “GetOmegaDecomStatus ok <Total status words> <Status number> <Stream name>
<Status word> | <Status number> <Stream name> <Status word> | ...”

GetOmegaDecomStatus Message Process:
1) The Requestor sends the “GetOmegaDecomStatus” message.

July 2020 Proprietary information of Curtiss Wright © 2020 158

T TADS #osrgemmns

2) The CDS sends a response message.

3) The Requestor receives the message.

7.2.12 System-wide Information

GetCdsSystemInfo
Description: This commands the CDS to return the various system information.

Behavior: The CDS will return an “ok” token followed by various system information tokens
separated by spaces.

Data Source Specific: No

Request Message

“GetCdsSystemInfo”

Response Messages

1 “GetCdsSystemInfo ok <CPU 1 Utilization> <CPU 2 Utilization> <CPU 3 Utilization>
<CPU 4 Utilization> <Total primary disk size in bytes> <Free primary disk size in
bytes> <Total auxiliary disk size in bytes> <Free auxiliary disk size in bytes> <Total
virtual memory> <Used page memory> <Total physical memory> <Used physical
memory> <Current IRIG time> <Data source control type (file, network)> <CDS
version> <Series of CPU number and utilization for all CPUs> <Data acquisition internal
queue length> <Archive request internal queue length> <Archive write internal queue
length> <OA IAP internal queue length> <Config update internal queue length>"

GetCdsSystemInfo Message Process:

1) The Requestor sends the “GetCdsSystemInfo” message.
2) The CDS sends a response message.

3) The Requestor receives the message.
GetFrontEndType (Primary source only)

Description: This commands the CDS to return the data source type. This currently only
specifies the primary data source.

Behavior: The CDS will return an “ok” token followed by the primary data source type.
Data Source Specific: Not currently

Request Message
“GetFrontEndType”

Response Messages

1 “GetFrontEndType ok
<0OS90,MCS,SYS500,0MEGA,VISTA,S6200,CUSTOM,Unknown>"

GetFrontEndType message process:

1) The Requestor sends the “GetFrontEndType” message.
2) The CDS sends a response message.

3) The Requestor receives the message.
GetNumDecomStreams

July 2020 Proprietary information of Curtiss Wright © 2020 159

T TADS #osrgemmns

Description: This commands the CDS to return the total number of decom status streams as
defined by the upstream data sources.

Behavior: The CDS will return an “ok” token followed by the number of decom status streams.
Data Source Specific: Not currently
Request Message

“GetNumDecomStreams”

Response Messages

1 “GetNumDecomStreams ok <Total decom status streams>"

GetNumDecomStreams message process:

1) The Requestor sends the “GetNumDecomStreams” message.

2) The CDS sends a response message.

3) The Requestor receives the message.

GetBaseDataSourcelnfo (All data sources)

Description: This commands the CDS to provide various information for all active data sources.

Behavior: The CDS will return an “ok” token along with the total number of active data sources
followed by a series of data source types and number of decom status streams for each instance
separated by “[”

Data Source Specific: Yes
Request Message

“GetBaseDataSourcelnfo”

Response Messages

1 “GetBaseDataSourcelnfo ok <Total data sources> | <Data source 1 type, Number decom
status streams> | <Data source 2 type, Number decom status streams>...”

GetBaseDataSourcelnfo Message Process:

1) The Requestor sends the “GetBaseDataSourcelnfo” message.
2) The CDS sends a response message.

3) The Requestor receives the message.

C++ Source Code Example
Note: This example is for demonstration purposes only and may not to compile as written.

Note: Many languages, such as V, C#, C and C++ provide their own socket routines that will
work with the IADS CDS Command interface.

// Creates a socket connection to the IADS Commander
ClientSocket* clientSocket = new ClientSocket (port, host) ;
if(clientSocket == NULL)

{

printf ("Error: Socket Interface Creation Error...\n") ;

July 2020 Proprietary information of Curtiss Wright © 2020 160

R T IADS vesrrogemming

exit(1) ;

// Clients make an active connect

printf ("- Waiting to Connect to Service\n") ;

if(clientSocket->Connect(-1) == 0)

{
printf ("Error Client Unable to make Active Connect...\n") ;
exit(1) ;

}

printf ("- Client Connected...\n\n") ;

// Construct and send the message
char message[500];

strcpy (message, “IsTimeValidated”) ;

if(clientSocket->send(message, 500) == 0)
{

return 0 ;

char responsee[500] ;

// CDS doesn't guarantee the message to be null terminated

response[499] = '"\0';

if(clientSocket->recv (response, 500) == 0)

{

return 0O;

// Token 1 is the message name

// Token 2 is the Ok or Failure token

// Token 3 is the response

char tokenl[500], token2[500], token3[500];

// Replace with your own get token function
GetToken (response, tokenl, 0, ' ');
GetToken (response, token2, 1, ' ');

GetToken (response, token3, 2, ' ');

July 2020 Proprietary information of Curtiss Wright © 2020 161

T TADS #osrgemmns

// Check if we got an Ok or Failure

if(strcmpi (tokenl, “failure”)==0)
{

return 0 ;

—

// output the response to the console
// true means the CDS has validated time, false means it has not.

printf (Y“Response Message: %s\n”, token3);

delete clientSocket;

Undocumented Messages

StartStatistics Not released
StopStatistics Not released
IsStaticsOn Not released
IsStaticsConnected Not released
GetParameterStatOverflows Not released
GetBeloBoxInfo Obsolete

GetBeloBoxDecomStatus Obsolete

7.2.13 Startup IADS Command Line Options

The following command line options are necessary if using the IADS Commander to start the
IADS CDS or IADS Client applications in a real time environment. A complete list of all IADS
command line options is available in the IADS Help System.

IADS Client: Use only one of the following startup arguments, either /server or /startupFile.

Argument

/server HOSTNAME

For example: /server IADS-CDS

/startupFile FILEPATH

For example:

/startupFile C:\ProgramFiles\| ADS\ClientWorkstation\Client.iads.iadsStartupFile

IADS CDS:

Argument

/startupFile FILEPATH
For example:

/startupFile ... \IADS\ComputeDataServer\CDS.ComputeDataServer.iadsStartupFile

July 2020 Proprietary information of Curtiss Wright © 2020 162

T TADS #osrgemmns

7.3 IADS Server (CDS) Data Throughput Performance Testing

This tutorial provides instruction on setting up the CdsStress program in order to test data
throughput performance, including total CPU, memory access and the archiving system of the
CDS on your server PC. This program does NOT test the complete system performance
including functions such as nulling, client data access and database updates in real time.

The CdsStress program was written to help end users determine their system’s
performance capabilities for the CDS. Currently on machines such as Dell’s 2950 the CDS can
process 64000 parameters at | Mega sample aggregate data rate. Performance may vary
depending on the Server’s capabilities and the network performance to the data source sender.

7.3.1 Overview

The CdsStress kit is available for download on the Curtiss Wright IADS website at
https://iads.symvionics.com/support/programming-examples/ Data Processing Examples: 3. CDS
Performance Analysis Program and includes:

1) CdsStress.exe - The simulated data source program. It easily allows increasing the data
throughput, the number of parameters and the sample rate mix to efficiently simulate a real-
world data scenario; it automatically creates the IADS Configuration file (the IADS
database) and the CDS parameter definitions (PRN) files used by the CDS.

2) parmlInfo.txt -The input file to the CdsStress program for setting up the various data output
rates. This file is edited by the user to set the data throughput rate of the CdsStress program.

3) 1adsCDS.init - The input file to set the CDS run-time properties settings.

Note: This kit does not include the IADS Server (ComputeDataServer.exe) or IADS Client
(Tads.exe) executables.

7.3.2 To run the data throughput test

1) Download the CdsStress program kit referenced above and unzip all the files onto your
system. If you put all files in a directory you create at C:\CdsFiles the [adsCds.init will not
need to be modified greatly.

2) Right-click on the CdsStress.exe > Create Shortcut.

3) Right-click On the CdsStress.exe - Shortcut > Properties. At the end of the Target line enter:
CDS/StartupFile c:\CdsFiles\IadsCDS.init

July 2020 Proprietary information of Curtiss Wright © 2020 163

https://iads.symvionics.com/support/programming-examples/

User Guide

Cllwkg;las”s; m@ IADS Programming

4) Double-click on the shortcut to run the CdsStress program. The IADS Configuration file and

5) Modify the “LOCATIONI” property in the iadsCDS.init file to point to the correct data

6)

7)

PRN file will output to the CdsFiles directory.
B " CdsStress.exe - Shortcut | =RRE X 1

Welcome to the CDS Stress Test Program

1. Process the Parameter Information File(from parminfo.txt>: “CDSFiles“parmInfo
-txt

2_. Build the Config File: “~CDSFilez“ladsCDS.config
(3. (Custom Data Source? — Build the PRH File: “CD8Files“ladsCDS.prn

— Total Parameters{including time): 342

— Aggregate Data Rate(samples~zec): 26780.00060008
— Aggregate Data Hatechytes-szec): 1680680.000000
— Packet Sample Rate: 58

— Packet Rate in Ms: 28

— Packet Size C(hytes): 4424

— Largest Sample Hate: 1868.H00000A

— Smallest Sample Rate: 1.06000008

4. Wait for CDE connect...
— Blocked waiting for connect hy the CDS on Port: ¢ 498088 >

e A

archive file path.

LOCATIONTI = C:/CdsFiles/ladsOutputFiles
POSTFLIGHTCONFIG = C:/CdsFiles/IadsOutputFiles/pfConfig

Modify the “DATALOCATION” property to point to the PC that the CdsStress program is

running on (The “’Port Id” does not need to be modified).
DATALOCATION = Pat3600 49000

Run the CDS. The CDS uses the property settings in the ladsCds.init file to locate the prn

and config files; and connect to the CdsStress data source program. Enter a “20” on the CDS
screen to validate the IADS Configuration. Once complete, enter a “30” to start real time. If

everything is setup correctly then the CDS will start receiving data and validate time.

=+ D:\WProjects\lads\ComputeDataServer\Debug\ComputeDataServer.exe

LH. Weaponz Hay Mulling Hull Correc
raft Mullimg Hull Core
Compression p CDS Pro nd Begin Data Comp sion
= Exit CDE Process

gate for data urce setup = 26780.000888
£ a source 3 ze in 3324

Renote 1. local 1. d to byte swap a

Data sou responded packet format = B

Actual data source packet size in bytes = 3324

Data interface huffer allocation size = 22144 for data source = B
Starting time validation for data source B...

HOTICE: Succeeded obtaining valid time for data source a

Initial validated time = HBEL:0B0:B8:18.888 for data source = B

July 2020 Proprietary information of Curtiss Wright © 2020

164

T TADS #osrgemmns

The primary test is to run the system and monitor CDS memory usage. Because the CDS is
designed to use memory on a demand basis any overrun conditions are determined by an ever
increasing memory usage on the Server PC which can be monitored by using the Windows
Task Manager. Each test may take up to an hour before memory usage stabilizes.

Another test is to connect an IADS Client to the CDS and examine the IRIG time on the
dashboard with time output of the CdsStress program and verify that they continue to match.

8) Enter a “99” on the CDS menu and the application will shut down. This may take a few
minutes to close the archive files. The CdsStress program will then be ready for another
connect, therefore it can continue to run. However it will need to be re-launched if another
data throughput set is setup in the parmInfo.txt file.

July 2020 Proprietary information of Curtiss Wright © 2020 165

T TADS #osrgemmns

8. Other

8.1 Iadsread Matlab Extension

The iadsread.mexw32 and iadsread.mexw64 MEX-files are included as part of the IADS
installation at \Program Files (x86)\lads\MatlabExtention. The iadsread function allows you to
programmatically access your IADS archive data so you can write Matlab programs to read in
and process the IADS flight data.

To set the path in Matlab to your IADS Matlab Extension directory:
1) Run Matlab.

2) Click the File drop down > Set Path...

3) In the Set Path dialog, click the Add Folder button.

4) Navigate to C:\ProgramFiles\lads\MatlabExtention and click OK.

5) Click the Save button.

6) Click the Close button.

To verify the iadsread function is available in Matlab:

In Matlab, enter iadsread in the Command Window. It should respond: ??? iadsread: Minimum
four inputs required. This is correct! The error occurs because the function call arguments are not
complete; follow the instructions below to setup the iadsread function. If ??? Undefined function
or variable 'iadsread' is returned, verify the path you have set and saved in Matlab is the
MatlabExtention directory that contains your iadsread.mexw32/64 or the iadsread.dll. If the error
still occurs, the version of Matlab you are using (pre 7.1) does not recognize the
iadsread.mexw32 file. Rename the iadsread.mexw32 to iadsread.dll. For more information on
this subject go to: http://www.mathworks.com/access/helpdesk/help/techdoc/rn/f26-998197 . html

To use the iadsread function:

In Matlab, enter the iadsread function with a required minimum of four inputs (with the
exception of the iadsread('DataDirectory')

Syntax

Variable = iadsread('DataDirectory or ServerName$PortId', 'IrigStartTime', 'IrigEndTime' or
NumSeconds, 'ParameterNameList (Comma Separated)', [optional arguments..])

Examples

Data = iadsread('D:\PostTestData\TestSet','001:00:05:05',5,/AB1001X,AB1002X,AB1003X")

Data =
iadsread('D:\PostTestData\TestSet','001:00:05:05',5,'/AB1001X,AB1002X,AB1003X",'Decimatio
nFactor',4,'ReturnTimeVector',1)

Notice that all 5 parameters are combined into 1 matrix called Data. That is because only 1
variable was assigned to the result of iadsread, Data = iadsread(...). To create 3 separate vectors,
define the left hand side of the equation as such: [AB1001X,AB1001X,AB1001X] = iadsread(...)

July 2020 Proprietary information of Curtiss Wright © 2020 166

T TADS #osrgemmns

Syntax | Example Result
Note: If you assign the output to a variable, for example, Data = iadsread(...) it will return the results in a
structure (‘struct array'). You can then use the Plot function in Matlab to plot the data, for example, plot (Data)
iadsread Data=iadsread Returns test data such as Start/Stop Time, Test,
(‘DataDirectory") ('D:\PostTestData\ Date, etc...

TestSet')
ladsread Data=iadsread Returns a list of the parameters in the archive by
(‘DataDirectory’, ' ', 0, '?") ('D:\PostTestData\ putting a '?' question mark in argument 4. iadsread

TestSet', "', 0,'?") ignores the contents of arguments 2 & 3.
ladsread Data=iadsread Returns a list of the parameters from the specified
('DataDirectory|ConfigFile"), ' ('D:\PostTestData\Fol config file by putting a '?' question mark in
,0,'7") der1|D:\PostTestData\ argument 4. iadsread ignores the contents of

Folder12\fpConfigl',", | arguments2 & 3.

0,7
iadsread('DataDirectory’, ', 0, Data=iadsread('D:\ Returns all the information for the parameter in
'Parameter’) PostTestData\TestSet', | argument 4.

"', 0, AB1001X")
iadsread('DataDirectory’, ', 0, Data=iadsread(Returns any piece of information in the
'Select Valuel from Table/Log | 'D:\PostTestData\Test configuration file through the use of an SQL
where [Optional] Value2 = Set',"', 0, 'Select Time statement. To use a wild card match, place
Value3") from EventMarkerLog | asterisks around the wild card.

where Comment =

Takeoff")

Note: Incorrect spacing can cause errors.

Input arguments:
Argument 1 - 'DataDirectory or ServerName$Portld (required)’

This string defines the directory of the IADS data archive. Use your 'Explorer' to locate the
directory of your choice. Copy the directory from the top of explorer into Matlab.

Another option is to specify a server name and port id in the format 'ServerName$PortId' to
connect iadsread directly to a real time data stream in the IADS Server. If you wanted to stream
through the entire flight while connected to the IADS Server. Leave the 'IrigStartTime' field as
an empty string and you will set the 1st argument (DataDirectory or ServerName$Portld) to the
IADS Server machine name and portld. Don't forget to separate the ServerName and Portld by a
$ (dollar sign). The default portld of the IADS Server is 58000 (unless this setting has been
modified this should work).

For example: Alt = iadsread('TADSServer$58000', '', 20, 'SineWave0-250')
Argument 2 - 'TrigStartTime' (required)

This string defines the start time of the data that you want to import. The Irig time string format
is DDD:HH:MM:SS.MS That is a 3 digit day (0-364), a two digit hour (0-23), a two digit
minute (0-59), a two digit second (0-59), and a partial second (MS) up to 9 digits long. This time
will most likely be obtained from the IADS Event Marker or Test Points Logs.

Argument 3 - 'ITrigEndTime' or NumberOfSeconds (required)

July 2020 Proprietary information of Curtiss Wright © 2020 167

CURTISS -

IADS Programming

WRIGHT m@ User Guide

This string defines the end time of the data that you are interested in. The Irig time string format
is DDD:HH:MM:SS.MS Another alternative is to specify a "scalar" number of seconds from the
start time.

Argument 4 - 'Parameter(s) or SQL statement (required)’

This string defines a list of parameter(s), comma separated (with no spaces between the commas)
that you want to import data from. The Parameter name is that defined in the Parameter Defaults
Table.

SQL Statement - 'select <ColumnName or Comma Separated ColumnNames> from
<TableName> where <Conditional Statement>'

The "where <Conditional Statement>" statement is Optional. In this format, the <ColumnName>
and <TableName> refers to the name of the column in any IADS log or table in the
Configuration Tool.

Optional Arguments - Start of Matlab Style (optional settings)

1. 'DecimationFactor’, factor 1..N (Defaults to 1 which denotes no decimation). This gives you
the ability to reduce the amount of data from the actual parameter’s update rate. If not
defined, it defaults to 1 (no decimation). The decimation is always based on the largest
sample rate of the parameters defined in Argument 4. For example, if you wanted a matrix of
data that represents half of the original data, you would enter 2. Decimation only removes
data points using a "Decimal Sub-Sample' of your original data (i.e. skips every N points).
No other interpolation method (such as linear or bspline interpolation) is currently used. Be
aware, if you use this option, you do have the possibility of removing data that is important
to your analysis. This argument used in the example is: 'DecimationFactor',4

2. 'OutputSampleRate', sampleRate (Defaults to highest sample rate of parameters chosen.
Trumps DecimationFactor). Similar to Decimation factor above, but specifies the exact
output sample rate desired. For example, 'OutputSampleRate',50

3. 'ReturnDataAtSameSR', 0=False 1=True (Defaults to True) Controls whether the data is
interpreted to same sample rate as defined by DecimationFactor or OutputSampleRate. By
default, the iadsread function "squares off" the data to same sample rate making it easier to
analyze. If this option is set to 0 (False) then each vector is output at its native sample rate
and thus the lengths of each vector may vary. In this state, the interpolation/correlation is left
to the user code.

4. 'ReturnTimeVector', 0=False 1=True (Defaults to False) Controls whether a time vector is
returned along with the data vector(s). The vector contains current time for each element of
the corresponding data vector elements.

5. 'ExceptionOnNoData', 0=False 1=True (Defaults to True). Determines whether iadsread
throws an error/exception if it is unable to get data for a given parameter. If False, returns
empty Vector or if Matrix fills column with NaN.

Note: For additional information on the 1adsread function see the Howto.m file at
\ProgramFiles\lads\MatlabExtention.

July 2020 Proprietary information of Curtiss Wright © 2020 168

T TADS #osrgemmns

8.2 Iadsread for Python

This section describes the installation and usage of the IADS data interface iadsread for
Python (modified version of the one for VB Script, VB.Net, C#, and C++). The library contains
the code to interface to your existing IADS data archives (files) is contained within the
"ladsDatalnterfaces.dll". For those familiar with the Matlab version of iadsread, this is almost
identical. Only a few changes have been made to stay compatible with the new languages. Pay
close attention to the return data format and also the change in the 'Optional' param value/pair
argument. Proper installation of these files will add a function to the system called
"ladsDatalnterfaces.iadsread", allowing you to programmatically access your IADS archive data.
You will then be able to write scripts or other programs to read in and process the store of flight
data you have saved with IADS. Just to note, the iadsread function can get data from any
parameter within an IADS archive, including derived parameters. If you have already installed
IADS on this machine, both the 32 and 64-bit versions of ladsDatalnterfaces.dll may be present
in your C:\Program Files\ADS\Common directory and "registered". Confirm that you have the
ladsDatalnterfaces.dll in this location and you should be ready to proceed. If IADS is not already
installed, simply create a folder on your PC (i.e. C:\Program Files\lads\Common) and copy the
ladsDatalnterfaces.dll to this directory. Once the file is copied you will need to "register" this dll
on your PC. To do this, double click on the file in Windows Explorer. When asked what
executable to run, browse to the C:\Windows\System32 directory and choose the "regsvr32.exe"
file. Once this is complete, you should get a confirmation dialog that it is properly registered. If
this does not work, you may have to contact your IT department to have them run regsvr32.exe
as Administrator from a command prompt.

To test that the 'iadsread' function is ready to go, open up a script editor (such as PythonWin) and
type:

import win32com.client
IadsDatalnterfaces = win32com.client.Dispatch("ladsDatalnterfaces.iadsread")
UsageString = ladsDatalnterfaces.iadsread()

Upon execution, the value of "UsageString" should be something like:

iadsread: Minimum 4 inputs required. iadsread: Minimum 4 inputs required. ladsread
("DataDirectoryOrServerName", "IrigStartTime", "IrigEndTime" or NumSeconds,
"ParameterNameList (Comma Separated)", [optional]Jparam/value pairs as described below)

Actually, this is correct! This means that your dll file is properly hooked up and will error
because the function call arguments are not quite complete. If the function returns with "Invalid
function or procedure" your dll is not correctly registered. Make sure you complete the dll
registration process above. If you get an error about variable type mismatch, note that the
iadsread function can return strings or arrays and needs a variable of type "variant" to receive it
(not a variant array).

iadsread("DataDirectoryOrServerName", "IrigStartTime", "IrigEndTime" or NumSeconds,
"ParameterNameList (Comma Separated)", [optional]":Param/Value Pairs" as described below)

Input arguments:

July 2020 Proprietary information of Curtiss Wright © 2020 169

T TADS #osrgemmns

Argument 1 - DataDirectory or ServerName$Portld or DataDirectory|ConfigFile

This string defines the source data directory of the IADS archive data for your Flight. Most flight
data is arranged in a system of directories by flight/test/tail or data on a server within your local
network. The specific location is group dependent. Use your 'Explorer' to locate the directory of
your choice. Then just simply copy the directory from the top of explorer into your function (be
sure to put quotes around the string). The value should be your FULL directory path (with drive
letter) to your IADS archive data. My data directory for this example is:
"D:\PostFlightData\Demo"

Another option is to specify a server name and port id in the format "ServerName$PortId" to
connect iadsread directly to a real time data stream in the IADS Server (CDS) or Post Test Data
Server. There is example code on this subject below.

A final option is to specify a DataDirectory and a separate config file in the format
'DataDirectory|ConfigFile' This will allow you to use a config file other than the default pfConfig
within the DataDirectory. An example of this would be
D:\PostFlightData\Demo|D:\SomeOtherDirectory\pfConfig

Use this option with care. You should be aware that the derived parameters and meta data for a
given archive may not be valid or relevant for another archive.

Argument 2 - IrigStartTime

This string argument is the start time of the data that you want to import. The format of the string
is IRIG time in the format “DDD:HH:MM:SS.MS” this is a 3 digit day (0-364), a two digit hour
(0-23), a two digit minute (0-59), a two digit second (0-59), and a partial second (MS) up to 9
digits long. This time will most likely be obtained from your flight notes or the IADS
EventMarker Log. This interface also has the ability to supply you with your
TestPoint/Maneuver start/end times for each flight. Let me know if you have any other ideas.

Argument 2 - [rigEndTime or NumSeconds

This string argument is the end time of the data that you are interested in. The Format of the
string is an IRIG time in the format DDD:HH:MM:SS.MS again. Your other alternative to is just
to specify an integer number of seconds. You could, for example, get 10 seconds of data from a
given start time.

Argument 4 - ParameterNameList

This string argument is a list of comma separated parameter names that you want to import data
from. For example, you could import some aircraft "Wing" parameters by defining a list like:
"AWO0001 X, AW0002X,AW0003X". Notice the name is the "Parameter" name defined in the
config file's "ParameterDefaults Table" (usually the parameter code)

Note: All filtering and nulling that was set in the ParameterDefaults entry for the specified
parameter is applied before the data is returned to Matlab. Spike detection and wild point
corrections are *not* applied as of this date. We may consider having this as an option.

One more option is being considered for next build: *The DataGroupName option will allow you
to access a group of parameters defined in your config file under the DataGroup table.

July 2020 Proprietary information of Curtiss Wright © 2020 170

T TADS #osrgemmns

Argument 5) - [optional|Start of comma separated "Param/Value Pairs"

Optional Arguments

1. DecimationFactor, factor 1..N (Defaults to 1 which denotes no decimation). This gives you
the ability to reduce the amount of data from the actual parameter's update rate. If not
defined, it defaults to 1 (no decimation). The decimation is always based on the largest
sample rate of the parameters defined in Argument 4. For example, if you wanted a matrix of
data that represents half of the original data, you would enter 2. Decimation only removes
data points using a "Decimal Sub-Sample' of your original data (i.e. skips every N points).
No other interpolation method (such as linear or bspline interpolation) is currently used. Be
aware, if you use this option, you do have the possibility of removing data that is important
to your analysis.

2. OutputSampleRate, sampleRate (Defaults to highest sample rate of parameters chosen.
Trumps DecimationFactor) Similar to Decimation factor above, but specifies the exact output
sample rate desired.

3. ReturnDataAtSameSR, 0=False 1=True (Defaults to True) - Controls whether the data is
interpreted to same sample rate as defined by DecimationFactor or OutputSampleRate. By
default, the iadsread function "squares off" the data to same sample rate making it easier to
analyze. If this option is set to 0 (False) then each vector is output at its native sample rate
and thus the lengths of each vector may vary. In this state, the interpolation/correlation is left
to the user code.

4. ReturnTimeVector, 0=False 1=True (Defaults to False) - Controls whether a time vector is
returned along with the data vector(s). The vector contains current time for each element of
the corresponding data vector elements. If ReturnDataAtSameSR=False then returns
time/data in a struct (not implemented yet).

5. TimeFormat, 0=SecondsSinceNewYear 1=IRIGTimeString (Defaults to
SecondsSinceNewYear) - Controls format of the time vector returned along with the data
vector(s). The values are either a count of total seconds since New Year or an IRIG String
formatted as DDD:HH:MM:SS.MS. Note that the IRIGTimeString option is only available in
vector format, so you must supply an output variable for time as well as each item in the
parameter name list.

6. ExceptionOnNoData, 0=False 1=True (Defaults to True) - Determines whether iadsread
throws an error/exception if it's unable to get data for a given parameter. If False, returns
missing values with Empty (VT _EMPTY). An example of using optional args is as follows:
IadsDatalnterfaces.iadsread(directory, "001:01:01.000", 5, "Param1,Param2,Param3",
"DecimationFactor,4,ReturnTimeVector,1")

Ok, let's proceed to a concrete example... Let's get some information on data from an IADS
archive using 'iadsread'. Find a directory on your system with IADS data using Microsoft
Explorer. Copy the directory name using <Ctrl C> and paste it into the <Insert Your Data
Directory Here> below:

Archivelnfo = ladsDatalnterfaces.iadsread("<Paste Your Data Directory Here>") The system
should respond with some information about the data within this directory including its

July 2020 Proprietary information of Curtiss Wright © 2020 171

T TADS #osrgemmns

StartTime, StopTime, DataDir, Flightld, Testld, Tailld. The results inside of the Archivelnfo
variable is a double dimension array. The first row contains all of the property names (as
described in the last sentence). The second row contains all the values of these properties. Please
recall the VB accesses array using the Array (Row, Column) format, with zero based index
values.

Example:

Archivelnfo[0][0] is the first row first value (which in this case is the property name
"StartTime")

Archivelnfo[0][1] is the first row second value (which in this case is the property name
"StopTime")

Archivelnfo[0][2] is the first row third value (which in this case is the property name
"DataDirectory") etc.. and now for the actual values of these properties for your specific flight...

Archivelnfo[1][0] is the second row first value (which in my case is the value
"001:00:00:00.000")

Archivelnfo[1][1] is the second row second value (which in my case is the value
"001:02:00:00.000")

Archivelnfo[1][2] is the second row third value (which in my case is the value
"D:\PostFlightData\Demo") and so on..

Now, let's say you want to know what parameters are available in an archive... To achieve this,
we put a '?' (Question Mark) in the ParameterList (argument number 4)

My line looks like this > [adsDatalnterfaces.iadsread("D:\PostFlightData\Demo", "", 0, "?")
(1adsread ignores contents of arguments 2 & 3)

Type the line below into your script editor inserting your own dir into the <Insert Your Data
Directory Here> text

ParameterList = ladsDatalnterfaces.iadsread("<Paste Your Data Directory Here>", "", "", "?")

The system should respond with the list of parameters defined in your ParameterDefaults table
ParameterList will be an array of Strings containing all the parameters. In my case:

ParameterList[0] ="DV1"
ParameterList[1] = "IABALT"
ParameterList[2] = "IIIALT"
ParameterList[3] = "IATASP", etc

You can use the UBound and a for loop to iterate though the parameters:
For index = 0 To UBound(ParameterList)
ParamName = ParameterList(index)
Next

Or by using the For Each statement:

For Each Param In ParameterList
ParamName = Param

Next

Another helpful tool is the ability to look at the settings of an individual parameter. It's just a
small difference from the last line. Put a "?" (Question Mark) in the ParameterList (argument

July 2020 Proprietary information of Curtiss Wright © 2020 172

T TADS #osrgemmns

number 4) then a <space> then the parameter name you want more information about... My line
looks like this -=> InfoOnlABALT = ladsDatalnterfaces.iadsread("D:\PostFlightData\Demo", "",
0,"? IABALT")

iadsread returns an array much like the previous 'Archivelnfo' above with the first row
containing the 'ColumnName' and the second row containing the actual value of the column.
Again, the array is accessed InfoOnIABALT(Row, Column) with zero based indices

InfoOnIABALT[0][0] = "ParameterDefaults" InfoOnIABALT[1][0] = "STRUCTURES"
InfoOnIABALT[0][1] = "Parameter" InfoOnIABALT[1][1] = "PF5032"
InfoOnIABALT[0][2] = "ParamType" InfoOnIABALT[1][2] = "float"
InfoOnIABALT[0][3] = "ParamGroup" InfoOnlIABALT([1][3] = "LOADS"
InfoOnIABALT[0][4] = "ParamSubGroup" InfoOnlABALT[1][4] = "Door - Misc"
InfoOnIABALTJ[0][5] = "ShortName" InfoOnIABALT/[1][5] = "LIRCM Bay Pressure"
InfoOnIABALTI[0][6] = "LongName" InfoOnIABALT[1][6] = "LIRCM Bay Pressure"
InfoOnIABALTI[0][7] = "Units" InfoOnIABALT[1][7] = "psi"
[0
[0
[0
[0
[0
[0
[0

InfoOnIABALTI0][8] = "Color" InfoOnIABALT[1][8] = 16711680
InfoOnIABALTI[0][9] = "Width" InfoOnIABALT[1][9] =1
InfoOnIABALT[0][10] = "DataSourceType" InfoOnlIABALT[1][10] ="Tpp"
InfoOnlIABALTI[0][11] = "DataSourceArguement" InfoOnI[ABALT[1][11]="1"
InfoOnIABALTJ[0][12] = "UpdateRate" InfoOnIABALT[1][12] = "49.3213"
InfoOnlIABALTJ[0][13] = "LLNegative" InfoOn[ABALT[1][13] ="-1000"
InfoOnIABALT/[0][14] = "LLPositive" InfoOnIABALT[1][14] = "1686"

(values continue...)

Okay, now to extract actual flight data from an IADS archive. Type in the following code. We
need the output from this statement for a reasonable StartTime

Archivelnfo = ladsDatalnterfaces.iadsread("<Paste Your Data Directory Here>")

iadsread returns the values in Archivelnfo. Recall from a previous time that Archivelnfo is a
double dimension array with the column names in the first row and values in the second. My data
returns:

Archivelnfo[0][0] = "StartTime" Archivelnfo[1][0]="318:17:37:52.393"
Archivelnfo[0][1] = "StopTime" Archivelnfo[1][1]="318:21:58:51.518"
Archivelnfo[0][2] = "DataDir" Archivelnfo[1][2] = "D:\PostFlightData\Demo"
Archivelnfo[0][3] = "Flight" Archivelnfo[1][3]="100"

Archivelnfo[0][4] = "Test" Archivelnfo[1][4] = "100-ABC"
Archivelnfo[0][5] = "Tail" Archivelnfo[1][5]="001"

Archivelnfo[0][6] = "Date" Archivelnfo[1][6] ="11/14/1998"

Just as an example, let's read the first 5.5 seconds of data from a couple of parameters. Use the
"StartTime" string of "318:17:37:52.393" obtained from Archivelnfo[1][0] above as the value of

July 2020 Proprietary information of Curtiss Wright © 2020 173

T TADS #osrgemmns

argument 1. Your second argument should be 5.5 (or any number of seconds). Your third
argument should be a list of comma separated parameter names. Pick parameter names from the
list returned above...My line looks something like this ->

Data = [adsDatalnterfaces.iadsread("D:\PostFlightData\Demo", "318:17:37:52.393", 5.5,
"Sweep,SineWavel0Hz,SineWave20Hz,SineWave30Hz,SineWave40Hz")

Type the line below into your script editor inserting your own dir, StartTime, and parameter list.

Data = ladsDatalnterfaces.iadsread("<Insert Your Data Directory Here>", "<Insert StartTime
String Here>", 5.5, "<Your Parameter List Comma Separated>")

Hint: If you have an error getting data at this StartTime, add a couple of minutes to your start
time. Sometimes data for a given parameter starts later than others...Alternatively, if you knew
the actual StartTime and EndTime of your data, you could use it to define your data of interest.

My line looks something like this:

Data = ladsDatalnterfaces.iadsread("D:\PostFlightData\Demo", "318:17:40:53.393",
"318:17:40:54.393", "Sweep,SineWavel0Hz,SineWave20Hz,SineWave30Hz,SineWave40Hz",
"DecimationFactor,2")

I requested one second of data from the parameters defined in my list, and I wanted the data at
DecimationFactor of 2 (giving me every other point from the data).

Data = ladsDatalnterfaces.iadsread("<Insert Your Data Dir Here>", "<Insert StartTime Here>",
"<Insert EndTime Here>", "<Your Parameter List Comma Separated>, "DecimationFactor,2")

If all is well, you will get the data requested in matrix form (double dimension array
row,column) with the number of columns matching the number of parameters you have
requested and each row being the set of data values.

In my example:

Data[0][0] = FirstValueOfSweepParam

Data[0][1] = FirstValueOfSineWavel0HzParam
Data[0][2] = FirstValueOfSineWave20HzParam
Data[0][3] = FirstValueOfSineWave30HzParam
Data[0][4] = FirstValueOfSineWave40HzParam
Data[1][0] = SecondValueOfSweepParam
Data[1][1] = SecondValueOfSineWavel 0HzParam
Data[1][2] = SecondValueOfSineWave20HzParam
Data[1][3] = SecondValueOfSineWave30HzParam
Data[1][4] = SecondValueOfSineWave40HzParam
And so on....

Let's say that along with data you also want the current value of time. You could do that with the
"ReturnTimeVector" optional argument as follows:

DataWithTimeAsFirstVector = ladsDatalnterfaces.iadsread("<Insert Your Data Dir Here>",
"<Insert StartTime Here>", "<Insert EndTime Here>", "<Your Parameter List Comma
Separated>", "DecimationFactor,2,ReturnTimeVector,1")

July 2020 Proprietary information of Curtiss Wright © 2020 174

T TADS #osrgemmns

The first column DataWithTimeAsFirstVector(0..N,0) will be filled with the actual time stamp of
elapsed seconds since midnight. If you want an ascii IRIG time representation simply add
"TimeFormat,1" to the optional last argument like so:

DataWithTimeAsFirstVector = ladsDatalnterfaces.iadsread("<Insert Your Data Dir Here>",
"<Insert StartTime Here>", "<Insert EndTime Here>", "<Your Parameter List Comma
Separated>", "DecimationFactor,2,ReturnTimeVector, 1, TimeFormat,1")

Notice that all parameters are combined into 1 matrix called 'Data’. That's because the interface
only allows one variable to the result of iadsread Data = iadsread(..). If you want the data in
separate vectors, you would have to call the iadsread function 3 times. Here is an example below
how to create 3 separate vectors

a = ladsDatalnterfaces.iadsread("D:\PostFlightData\Demo", "318:17:40:53.393", 20, "Sweep")

b = ladsDatalnterfaces.iadsread("D:\PostFlightData\Demo", "318:17:40:53.393", 20,
"SineWavel0Hz")

¢ = ladsDatalnterfaces.iadsread("D:\PostFlightData\Demo", "318:17:40:53.393", 20,
"SineWave20Hz")

The vector 'a' will contain data from the 'Sweep' parameter, 'b' from the 'SineWavel OHZ'
parameter, and 'c' from 'SineWave20Hz'

Unlike the multiple parameter requests, these single parameter requests return a single
dimensional array. The data is accessed as:

a(0), a(1), a(2), etc...

To loop through all the values would be similar to the ParameterList above:
For index = 0 To UBound(a)

Value = a(index)

Next

In other words, we don't have to worry about the double dimension (row,column) anymore, but
there are other things to consider.

If for example a, b, and c had different sample rates, we would probably get different amounts of
data in each case. Lining up the values to perform computations will be a difficult task, so be
aware of this fact. When parameters are combined into a matrix, IADS handles this issue by up-
sampling all the parameter to the highest rate in the list (unless overridden by the
'OutputSampleRate' or 'DecimationFactor' optional argument. So, if you want separate vectors,
try using the "OutputSampleRate" option to force matching rates (recommend to upsample to
highest rate).

Writing a program to analyze data should be fairly simple, maybe something like this:
Read in the data from IADS

Data = iadsread("D:\PostFlightData\Demo", "318:17:40:53.393", "318:17:40:54.393",
"Sweep,SineWavel 0Hz,SineWave20Hz,SineWave30Hz,SineWave40Hz")

Call my analysis function with the data matrix obtained from IADS
b = myAnalysisFunction(Data)
Now output the results

July 2020 Proprietary information of Curtiss Wright © 2020 175

T TADS #osrgemmns

That should be it for the basics; let's continue on with more advanced subjects.

Here is another example of accessing data sequentially. Say you just wanted to stream through
the entire flight worth of data for a number of parameters and plot them. What you have to do it
call iadsread at least once with a valid start time (and you must use the NumSeconds option in
argument 3). In you next call to iadsread, you leave the StartTime string (argument 2) blank.
This will tell iadsread that you wish to continue reading at the point you left off last. In the
example below, the first call will read 10.0 seconds at time 318:17:40:53. Each sequential call
with " as the argument 3 value will return the next sequential 10.0 seconds of data.

In order to make this work on your system, you'll have to modify arguments 1,2 & 4 to the
correct values for your archive.

SweepData = ladsDatalnterfaces.iadsread("D:\PostFlightData\Demo", "318:17:40:53", 10.0,

steep")
For index =0 to 100
plot(SweepData)

MsgBox "Press ok for next Plot"

' Notice that the second argument "IrigStartTime" is a blank string. This will read the next

SweepData = ladsDatalnterfaces.iadsread("D:\PostFlightData\Demo", "", 10.0, "Sweep")
Next

Here is yet another example of accessing data sequentially. Say you just wanted to stream
through the entire flight while connected to the IADS CDS or a Post Test Data Server. It is very
similar to the last example except you'll leave the 'StartTime' field as an empty string and set the
1st argument (DataDirectory or ServerName$Portld) to the CDS or Post Test Data Server
machine name and portld. Don't forget to separate the ServerName and Portld by a $ (dollar
sign). The default portld of the IADS CDS is 58000, so unless you have modified it in the setup
bag this should work.

In order to make this work on your system, you'll have to modify arguments 1 & 4 to the correct
values for your system setup.

Sub TestRealTime2()
Forj=1to 100
Press_Alt = ladsDatalnterfaces.iadsread("TADS-CDS$58000", "", 2.0, "SineWave0-250")
plot(Press_Alt)

WScript.Sleep 10 ' Allow a little time for the new data. This line may need to be modified
for the scripting environment used

end
End Sub

#*New and advanced stuff to query info from the config file*

There is now a new capability to query any piece of information in configuration file through the
use of an SQL statement. To achieve this, we must first explain how write a simple SQL
statement.

July 2020 Proprietary information of Curtiss Wright © 2020 176

T TADS #osrgemmns

The basic format is: 'select <ColumnName or Comma Seperated ColumnNames> from
<TableName> where <Conditional Statement> (The 'where' statement is optional). In this
format, the <ColumnName> refers to the name of the column in any IADS log or in any
ConfigTool window... Likewise, the <TableName> refers to the actual name of the log name or
'"Table' name in the ConfigTool. This is a simple and very useful example that extracts every
column from every row in the 'EventMarkerLog' table. If we want to get every row and column,
we must use a 'wildcard' (an '*') for the column name, as well as no 'where' clause....
EventMarkerLogContents = [adsDatalnterfaces.iadsread("D:\PostFlightData\Demo", "", 0, "?
select * from EventMarkerLog")

1adsread returns:

5x2 array with field names in row 0 (EventMarkerLogContents[0][0) ..
EventMarkerLogContents[0][5)):

Group
SubGroup
User

Time
Comment
PropertyBag

Examining the second row of the matrix (i.e. the first row of the EventMarkerLog)
EventMarkerLogContents[1][0) .. EventMarkerLogContents[1][5)

Shows:

Group: "LOADS"

SubGroup: "Maneuver Quality"

User: "ladsUser2"

Time: "001:12:40:29.011"

Comment: "E1 APU Start"

PropertyBag: "Each field can be accessed using the proper array index.
EventMarkerLogContents[1][3) would return the time of the event or "010:12:40:29.011"

What if we were only concerned with the 'Time' column information? Let's limit our output to
only the "Time" column like so:

TimeOfEvent = ladsDatalnterfaces.iadsread("D:\PostFlightData\Demo", "", 0, "? select Time
from EventMarkerLog")

ColumnName = TimeOfEvent(0,0)
Time = TimeOfEvent(1,0)
1adsread returns:

Time

012:17:49:29.011

Now even more useful... What if we were only concerned with the 'Time' column information
when a certain comment occurred?

July 2020 Proprietary information of Curtiss Wright © 2020 177

T TADS #osrgemmns

Let's assume that we had a Comment in our 'EventMarkerLog' table that always contained the
word 'Takeoff' and corresponded to the takeoff time of the aircraft. Let's limit our output to only
the 'Time' column when the 'Comment' contained the word 'Takeoff'. Ok, this is where the
'where' clause comes into play. It is a conditional statement that will allow you to filter through
the many rows of a table/log and find the specific row that you need. The query would look
something like:

TimeOfSpecificEvent = ladsDatalnterfaces.iadsread("D:\PostFlightData\Demo", "", 0, "? select
Time from EventMarkerLog where Comment = '*Takeoff*' ")

ColumnName = TimeOfSpecificEvent(0,0)

Time = TimeOfSpecificEvent(1,0)

Look at the 'where' clause above.... where Comment = "*Takeoff*'.... Confusing, isn't it? First of
all, the IADS SQL query statement requires that all strings in the 'where' clause be single
quoted... so we need two single quotes around the where clause "Takeoff' string. We also need to

use a 'Wildcard' match, placing asterisks '*' around the word '"Takeoff'. This tells iadsread to
match any comment that has 'Takeoff' anywhere in it... (i.e. 'E10 Takeoff ...' matches)

1adsread returns:

Time

012:18:41:19.247

Thus, the takeoff time of the aircraft is "012:18:41:19.247"

Just remember, you can get to any piece of data in the config file with the proper query.

If you need help to write your SQL statement or explain further, email iads-
support@curtisswright.com.

More examples.......

Test Streaming data for the entire flight into a processing function

IadsDatalnfo = [adsDatalnterfaces.iadsread("D:\PostFlightData\MyladsDataDirectory")
This returns a struct array where each field can be accessed by the proper index
Choices are StartTime, StopTime, DataDir, Flight, Test, Tail, and Date
ladsDatalnfo(1,0) would return for example: "318:17:37:52.393"

Set block size to read... Basically, the number of seconds to read for each computation
BlockSizeInSecondsToRead = 10

Process all the data for a given set of parameters. Fetch the next Matrix of data using iadsread
until the end it reached

MyParameterList = "Param1,Param2,Param3,Param4"

Done = False
On Error Resume Next
While (Not(Done))

Err.Clear()

July 2020 Proprietary information of Curtiss Wright © 2020 178

mailto:iads-support@curtisswright.com
mailto:iads-support@curtisswright.com

R T IADS vesrrogemming

Data = ladsDatalnterfaces.iadsread("D:\PostFlightData\MyladsDataDirectory", StartTime,
BlockSizeInSecondsToRead, MyParameterList)
If (Err.Number = 0) Then
ProcessTheData(Data)

StartTime =""
Else

Done = True
End If

End
Err.Clear()
On Error Goto 0

July 2020 Proprietary information of Curtiss Wright © 2020 179

CURTISS -

INDS.

IADS Programming

WRIGHT User Guide

APPENDIX A

TADS Configuration Table Reference
Name Description Type
AircraftReferences Used by Parameter Identification Flat
Aircraft Properties Aircraft properties table Flat
ActualFlutterTestPointsLog Completed flutter test points Flat
ActualLoadsTestPointsLog Completed Loads test points Flat
AnalysisLog Location of saved analysis results Flat
AnalysisWindows User created Analysis Windows Hierarchical
AttachedDataDisplays List of displays attached to AWs Hierarchical
FlutterSummaryLog Ongoing collection of flutter results Flat
DataStorageInformation Data Information from a real-time test Flat
CurrentFlightInformation Table of the current flight test Flat
Classifications List of available classifications Flat
GroupDefinitions List of available classification strings Flat
Predefined Comments Pre-defined event marker strings Flat
Constants User defined constants Flat
DataDisplays List of used data displays Hierarchical
DataStorageLog Information on data archive set Flat
DataDropOutLog Not Currently used Flat
DisplayDefaults Data display defaults Flat
Desktops User defined Desktops Hierarchical
ExtendedDesktopInfo Additional Desktop information Flat
Envelopes User defined envelopes Flat
ReferenceCurves User defined reference envelopes Flat
EventMarkerLog User created event markers Flat
HardCopyLog <blank> Flat
HardCopyBanners <blank> Flat
LogBehavior Log behavior settings Flat
LoadsSummaryLog User created loads information Flat
TableUpdateBehavior Table update behavior properties Flat
ModalDefinitions User defined mode ranges and titles Flat
ParameterDefaultsState List of parameter default sets Hierarchical
ParameterDefaults List of all user defined parameters Flat
ParametersSavedInDisplays Parameters saved in defined displays Hierarchical
PlannedLoadsTestPoints User defined planned loads test points Flat
PlannedFlutterTestPoints User defined planned flutter points Flat
AlphaNumeric List of Alphanumeric displays Flat
AlphaNumericTable List of AlphaNumericTable displays Flat
Annunciator List of Annunciator displays Flat
FrequencyResponsePlot List of Frequency response displays Flat
DisplayLabel List of Display Label displays Flat
DisplayFolder List of Display Folder displays Flat
CrossPlot List of Cross Plot displays Flat
DisplayTab List of Display Tab displays Flat
FlutterSummaryPlot List of Flutter Summary Plot displays Flat
FrequencyPlot List of Frequency Plot displays Flat
LoadsSummaryPlot List of Loads Summary Plot displays Flat
NyquistPlot List of Nyquist Plot displays Flat
Slider List of Slider displays Flat
Stripchart List of Stripchart displays Flat

July 2020 Proprietary information of Curtiss Wright © 2020 180

CURTISS -

INDS.

IADS Programming

WRIGHT User Guide
TppDefinitions List of TPP parameters validated Flat
Users List of user defined Users Flat
Lists <blank> Flat
PeaksLog User selected peak values Flat
SystemValues User defined System values Flat
ToolPositions Internal table used for positions Flat
ThresholdLog Calculated thresholds Flat
ViewQueries Internal table of view queries Flat
SelectionsLog User data selections Flat
SystemParameterDefaults List of System Parameter Defaults Flat
ValidationLog Results of TPP parameter validation Flat
DataEditLog List of data edits performed Flat
NullCorrections System calculated Null corrections Flat
FESParameters Parameters used for the FES automation Flat
ActiveXControlsTab ActiveX displays on display builder tab Flat
ActiveXDisplay List of ActiveX displays Flat
DataViewsDisplay List of Data Views displays Flat
DataGroups User defined Data Groups Flat
DerivativeSummaryLog List of pEst calculated derivatives Flat
OctaveBandDisplay List of Octave Band displays Flat
TestPointLog List of completed test points Flat
PlannedTestPoints List of Planned test points Flat
Maneuvers List of pEst required maneuvers Flat
FlightConditions List of pEst required Flight conditions Flat
PredictedResults List of pEst required Predicted Results Flat
CurrentFlightInformation2 Additional Flight information Flat

July 2020 Proprietary information of Curtiss Wright © 2020 181

T TADS #osrgemmns

APPENDIX B

TADS Data Types Enumerated
IADS Data Types

iadsInteger 0 Integer data type.
iadsDiscrete 1 Discrete data type.
iadsFloatingPoint 2 Floating point data type.
iadsLong 3 Long data type.
iadsUnsignedLong 4 Unsigned long data type.
iadsDouble 5 Double data type.
iadsAscii 6 ASCII data type.
iadsBlob 7 Binary data type

IADS Data Source Type
iadsTpp TPP data source
iadsDerived 2 Derived data source

—_—

iadslap 3 Derived data source.
iadsOn 0 On setting
iadsOff 1 Off setting
iadsYes 0 Yes setting
iadsNo 1 No setting
iadsFilterNone 0 No filter algorithm
iadsButterworthFilter 1 Butterworth filter
iadsEllipticFilter 2 Elliptic filter
iadsLowPass 1 Low pass filter
iadsHighPass 2 High pass filter
iadsBandPass 3 Band pass filter
iadsDataCorrectionNone 0 No data correction
iadsDefaultValue 1 Default value

iadsLastValue 2 Last value
Null corrections
iadsNullCorrectionNo
iadsNullCorrectionYes
iadsNullEquationInput
iadsNullEquationResult
Null group enumeration
iadsAircraftGroup Aircraft group
iadsWeaponsGroup Weapons group
Spike detection method
iadsSpikeDetectionMehodNone
iadsSlopeChange
iadsAbsoluteChange

No null correction

Use null correction
Equation input correction
Equation result correction

W= O

—_—

(=]

No spike detection
Slope change detection
Absolute change detection

—_—

TADS compute types Enum Value Description
iadsAutoSpectrum 0 Auto spectrum compute type
iadsPsd 1 PSD compute type
iadsPhaseMagnitude 2 Phase magnitude compute type
iadsPhaseReal 3 Phase real compute type
iadsPhaselmaginary 4 Phase imaginary compute type

—

July 2020 Proprietary information of Curtiss Wright © 2020 82

CURTISS -
WRIGHT

INDS.

IADS Programming
User Guide

iadsPhaseGain

5

Phase gain compute type

iadsBode

Bode compute type

iadsNyquist Nyquist compute
TADS Window types Value Description

iadsAverageMethodNone

iadsWindowTypeNone 0 Default window type (none)
iadsHanning 1 Hanning window
iadsHamming 2 Hamming window
iadsBlackman 3 Blackman window
iadsKaiserBessel 4 Kaiser Bessel window
iadsRectangular 5 Rectangular window
iadsFlatTop 6 Flat To D Wmdow
iadsAlphaNone No alpha
iadsAlphaTwoPointZero 1 2.0 alpha
iadsAlphaTwoPointFive 2 2.5 alpha
iadsAlphaThreePointZero 3 3 O alpha

4

iadsAlphaThreePointFive alpha
TADS Averaging Methods

No averaging method

iadsAverageTime

Time averaging method

iadsAverageFrequenc

TIADS Block Sizes (in bytes)

Frequency averaging method

iadsBlock64 64 64 byte block
iadsBlock128 128 128 byte block
iadsBlock256 256 256 byte block
iadsBlock512 512 512 byte block
iadsBlock1024 1024 1024 byte block
iadsBlock2048 2048 2048 byte block
iadsBlock4096 4096 4096 byte block
iadsBlock8192 8192 8192 byte block
iadsBlock16384 16384 16384 byte block
iadsBlock32768 32768 32768 byte block

iadsNoThreshold

iadsBlock65536 65536 65536 byte block
IADS Threshold levels Value Description

iadsWarning

1

iadsAlarm

2

July 2020 Proprietary information of Curtiss Wright © 2020

183

R T IADS vesrrogemming

APPENDIX C
TADS Interface Message Format 1
0| Message size)
I Sequence
2 Packets sent
3| Date lossioverflow > Header
4 Dummy
7 Dummy <
tag 1 /tag 2
tag/val
a%m m: = value 1
1
pailt s - value 2
~ : Body
tag 1 /tag 2 > o
tag/value
_ = value 1
t
pair seta - value 2
J
\ J
'
32-bat

July 2020 Proprietary information of Curtiss Wright © 2020 184

CURTISS -
WRIGHT

INDS.

IADS Programming
User Guide

TIADS Interface Message Format 2

tag/size/value

set 1

tag/size/value

setn

July 2020

0

%]

<

<

Message size

Seauence

Packets zent

Dizta loas/overflow

Dummy

Dummy

tag

size

value

tag

size

value

32-bat

> Header

> Bodv

Note: Size in bytes of value
field determined by size field

Proprietary information of Curtiss Wright © 2020

185

CURTISS -

INDS.

IADS Programming

WRIGHT User Guide
APPENDIX D
Sample Parameter Definition File
1 TimeUpperWord 1000.0 1 SystemParamType = MajorTime
2 TimeLowerWord 1000.0 1 SystemParamType = MinorTime
3 PARAMETER1 12.330334596 2
4 PARAMETER2 24.6606691919 2
5 PARAMETER3 49.3213383838 2
6 PARAMETER4 98.6426767677 2
7 PARAMETERS 197.285353535 2
8 PARAMETERG 394.570707071 2
9 PARAMETER7 789.141414141 2
10 PARAMETERBLOB 10.0 7 DataSize = 92
100 DECOMSTATUS 789.141414141 1 SystemParamType = DecomStatus
July 2020 Proprietary information of Curtiss Wright © 2020 186

CURTISS -
WRIGHT

INDS.

IADS Programming
User Guide

APPENDIX E

TADS 32-bit Decom Status Parameter Format

31-6 5 4 3 2 1 0
SF(n+1)STAT- SF(n)STAT | SF2STAT | SF2STAT | SFISTAT | SFISTAT | FSTAT | FSTAT
Bits __ Signal Description
0-1 FSTAT Frame Status bits are decoded as follows:
10
00 Lock
01 Check
10 Verify
11 Search

23 SFISTAT
32
00
01
10
11

4-5 SF2STAT
54
00
01
10
11

July 2020

Subframe 1 Status Bits are decoded as follows:

Lock

Check
Verify
Search

Subframe 2 Status Bits are decoded as follows:

Lock

Check
Verify
Search

Proprietary information of Curtiss Wright © 2020

187

	1. Programming Resources
	1.1 Overview

	2. Custom ActiveX Display Plugins
	2.1 Creating an IADS custom ActiveX control using C# VS2015
	2.1.1 Adding properties to your new display using C# VS2015
	2.1.2 Debugging your new display in IADS using C# VS2015

	2.2 Creating an IADS custom ActiveX control using C++ VS2015
	2.2.1 Adding properties to your new display using C++ VS2015
	2.2.2 Debugging your new display in IADS using C++ VS2015

	2.3 Adding your new display to IADS
	2.4 IADS demo model control project

	3. Custom Derived Functions
	3.1 Creating a custom derived function using C# VS2015
	3.1.1 Debugging your new function in IADS

	3.2 Creating a custom derived function using C++ VS2015
	3.2.1 Debugging your new function in C++ VS2015
	3.2.2 Deploying your new function in C++ VS2015

	3.3 Accessing your new function in IADS
	3.4 Advanced Topics
	3.4.1 Initialization and execution of your custom function
	3.4.2 Returning multiple results from your custom function

	4. Custom Plugins
	4.1 Creating a custom export plugin using C++ VS2015
	4.1.1 Adding IADS Interface files
	4.1.2 Adding IDataExportPlugin code and your export code
	4.1.3 Make your DLL self-register for use in IADS
	4.1.4 Debugging your new plugin in IADS

	5. Application Programming Interfaces
	5.1 IADS Configuration File API
	5.1.1 Configuration Interface
	5.1.2 Collection Interfaces
	5.1.3 General Purpose Query Interface

	5.2 IADS Data File API

	6. IADS Automation Interfaces
	6.1 IADS Data Export Scripts
	6.2 IADS Data File Reader in Visual Basic

	7. IADS Data Processing
	7.1 IADS Real Time Data Source Interface
	7.1.1 Data Source Specification
	7.1.2 IADS Server Setup
	7.1.3 Testing the data source using IADS Real Time Station
	7.1.4 Troubleshooting

	7.2 IADS Command Interface
	7.2.1 IADS Commander
	7.2.2 The CDS Command Server
	7.2.3 Initialization Commands and Information
	7.2.4 Data Acquisition Commands and Information
	7.2.5 Stopping Data Command and Information
	7.2.6 Time Information
	7.2.7 Archiving Commands and Information
	7.2.8 Nulling Commands and Information
	7.2.9 Data Compression Commands and Information
	7.2.10 Run State Information
	7.2.11 Data Source Information
	7.2.12 System-wide Information
	7.2.13 Startup IADS Command Line Options

	7.3 IADS Server (CDS) Data Throughput Performance Testing
	7.3.1 Overview
	7.3.2 To run the data throughput test

	8. Other
	8.1 Iadsread Matlab Extension
	8.2 Iadsread for Python
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	APPENDIX E

