Creating an IADS
Custom ActiveX Control
Using C++ VS2005

March 2014
SYMVIONICS Document SSD-IADS-044
© 1996-2014 SYMVIONICS, Inc.

All rights reserved.

£
SYMVIONICS ine.
Telemetry Systems

Created February 4, 2010

1.
2.

3.
4.
5.

Table of Contents

INEFOAUCTIONuiiiiece bbbttt bbb 3
Creating Your Display using the ATL COM Wizardcccccoovieiiiiieniiinne 3
2.1. Adding Properties to the DISPlay..........cccccveiiiiieiieii e 8
2.2. Ensuring Your Display is Saved Within IADS ... 13
Adding Your New Control t0 TADS ..o 16
Debugging Your New Control in TADS ... 18
Deploying your New CoNntrolcccooiiiiiiiiiese e 20

1.

Introduction

This document assumes you are using Microsoft Visual Studio 2005. The tutorial has not

yet been attempted on a newer version, although it may still apply. This instruction guide will
cover: creating a new display using the ATL COM Wizard, adding the new control to IADS,
debugging the new control in IADS, and ensuring the new display is saved within IADS.

2.

1)

2)

3)

Creating Your Display using the ATL COM Wizard

Open up VS2005 and Select “File -> New->Project”

@0 Start Page - Microsoft Visual Studio

ﬁ‘ Edit Wiew Tools Window Community Help

[new v [Praject... Chrl+Shift-+
Open P File... Chrl4M
Close Project From Existing Code...

In the New Project dialog that appears, choose the “Visual C++->ATL” tier and click the
ATL Project” option. At this point, please read the next step before you finish completing the
dialog. There are some important considerations when choosing the proper project name.

Project bypes: Templates:
= Wisual C++ __ ¥isual Studio installed templates
ATL

CLR ATL Praject [EJATL Server Project
General M5 BTL Server Web Service

MFC

Smark Device My Templates

Win32
+- Other Languages
4 Other Project Types

|=| Search Online Templates...

A project that uses the Active Template Library

Mame: My ActiverCantral

Location: CriMyActiveXControlDirectory Y

Solution Mame: My activexXContral Create directory for solution

[] add to Source Contral

The project name you choose will become part of the display identifier name (aka ProgID,
see note below). When it comes time to use your control in IADS, users will insert your new
control into the “Display Builder” toolbox based solely upon its name (more on this later).
Plan on creating many displays in one “project” (most common and easier to manage the
code). Choose a general project name like “AircraftGauges” or “FluidSystemDisplays”. One
way to look at it is that the project name is akin to the “Genus” of your display, so shoot for
generality. Consider prefixing the project name with your organization like “Nasa” or
“Lockheed”, as it may easier for users to locate your control the “Display Builder” list (i.e.
NasaFluidSystemDisplays or LockheedAircraftGauges).

4)

5)

Note: Microsoft refers to your function’s name as its “ProgID” (aka Program ID). This is the
string equivalent of your GUID (Global Unique Identifier) for the function. These Ids are
placed in the Microsoft registry (directly from your project’s “.rgs” file), allowing your
object to be created without any knowledge of the location of your “DI1” on the file system.
Of course, this assumes that it is registered using the “regsvr32” program (consult the
Microsoft documentation).

Now, in the fields at the bottom of the dialog, enter the project name, location, and the
solution name.

After pressing OK, the “ATL Project Wizard” dialog will appear as below.

ATL Project Wizard - MyFunction E]E|
H Welcome to the ATL Project Wizard
[ATL]

Cwerview These are the current project settings:

Application Settings ® Drynamic-Link Library
* Nonattributed

Click. Finish From any window to accept the current settings.

After you create the project, see the project's readme txt: file For information about
the project Features and files that are generated.

[Mext » H Finish ” Cancel]

Click the Next button in the Wizard. On the new wizard page, ensure that the “Dynamic Link
Library (DLL)” is checked. Every display that runs in IADS is of type DLL because it allows
for maximum speed in displaying graphics. Press the “Finish” button and the Wizard will set
up your project.

ATL Project Wizard - MyFunction

- Application Settings
Pl
hsa (%
W
Qvervien [attributed
Application Settings Server type:

(&) Dynarnic-link lbrary (DLL)
() Executable (EXE}
() Bervice (EXE)
Additional options:
[allowss merging of proseyjstub code
[support MFC
[suppart COM+ 1.0

6) Next, go to the “ClassView” tab in Visual Studio’s workspace and right-click on the project
name. Choose “Add->Class”.

* MyhActiveXControl - Microsoft Yisual Studio

File Edit ‘“iew Project Build Debug Data Tools Window Community Help

hiﬂ'l_]'ﬁgﬁ # B3 33 ﬂ'm'iﬂ'—_ib b Debug

i | &= = | F -~
<Sgarch > - H =

LAY

{28 MyActivexControlPs |] Build

Rebuild

Clean

Project Only »
Profile Guided Optimization »

Project Dependencies. ..
Project Build Order. ..
Custom Build Rules. ..

Sdsoluti.., [FFClass ... [Tool Build Crrder...

Output | add » |

ﬁg Class... I

Show output from: References..., Vi Resource... !

7) Upon adding a new class you will be presented with a dialog. Click the “ATL” tier and “ATL
Control” as shown below. When that is complete, press the “Add” button.

Add Class - MyhActiveXControl [5
oo |
Categories: Templates: BB =
¥isual Studio in_§talled templates
$ATL Simple Object CVATL Contral
(£} ATL OLEDE Consumer SEATL Dialog
ﬁATL Server Web Service ﬁndd ATL Support To MFC
'ﬁATL Property Page [EE]ATL Perfarmanice Moritor Object
[SEIATL OLEDE Provider (EATL Active Server Page Component
{7 ATL COM4 1.0 Component
My Templates___
' 5earch Online Templates. ..
Adds an Active Template Library Activel control
[dame: | |
Location: | | Browse. ..
L Add] [Cancel

8) On the first tab, enter the name of your display in the “Short Name” field. The wizard will fill

9)

out the rest of the tab automatically. For this example, I used “DisplayName” as the short
name. The name entered will be combined with your project name and will present the final
display name inside of lads (ProjectName.FunctionName) as explained on page 1. See the
“ProgID” field in your dialog for your final Iads display name. Update: Newer VisualStudio
versions do not automatically populate the ProglD field. Please ensure the ProgID field
contains your specific ProjectName.FunctionName text. If not, please type in the appropriate
text manually. Press “Next” to continue.

ATL Control Wizand - MyActiveXControl @E|

Welcome to the ATL Control Wizard
Mames i
2 Short name: .hiFile:
Options
St Digplayhame Displayhame.h E]
Appearance Class: .cop file:
Stock Properties CDisplayMame DisplayMame. cpp E]
[attributed
oM
Coclass: Type:
DisplayMame DisplayMame Class
Interface; ProgIC:
IDisplayhame My ActiveXContral DisplayMame
[Next =] [Finish] [Cancel]

On the next tab (“Options”), leave everything as default (Standard control, Apartment, Dual,
Yes, and no other options checked). This will allow you to take full control of a “blank
canvas” and draw your display using low level graphics libraries such as GDI/GDI+ or
OpenGL. On the other hand, if you need to create a “dialog based” display containing typical
dialog elements such as text boxes, drop down lists, etc you’ll need to select the “Composite
control” choice.

ATL Control Wizard - MyActiveXControl

Mames Control type: Threading model:
Options (%) Standard contral () single
Interfaces () Compasite contral () Apartment
Appearance () BHTML contral Inkerface:
Stack Properties [Minimal cantral @ Dual
() Custom
Aaggregation:
(&) Yes
() Mo Support:
() Only [connection points
[Licensed
Click here for unsupported Smart Device Options
I < Previous I [Next >] [Finish] [Cancel]

The remaining options are basically “COM speak”. If want understand these options fully,
you’ll have to consult the Microsoft documentation. The most notable remaining option is

“Interface”. In order to create a real compliant ActiveX “display”, you must choose “Dual”
interface. This will enable IADS (and other programs) to interface to your control using the
“IDispatch” interface, which allows a loosely coupled, “on the fly” communication. This also
happens to be the primary (simplistic) way that IADS gets data to your control. More on this
subject later.

10) On the next tab (“Interfaces”), leave all of the default choices and select “Next”. Again, these
options are more “COM speak” and include standard interfaces in which the Wizard will
implement for you automatically. If you want more background information, consult the
Microsoft documentation.

11) On the next tab (“Appearance”), select the “Windowed Only” checkbox if you plan on using
OpenGL,; otherwise uncheck it. “Windowed Only” will ensure that we have a window to
create an OpenGL context upon. For GDI based displays, we want to attempt to draw
“without a window” for speed and resource considerations. Leave the other settings as
default (later discuss the speed benefits of de-selecting the “Normalize DC” checkbox).
Remember, OpenGL = “Windowed Only”. Don’t worry, this can be easily changed later if
you make a mistake (as can almost anything).

ATL Control Wizard - MyActiveXControl

Appearance
Mames Wigw status: Other:
Options Spaque Mormalized DC
Interfaces Solid background P ‘windowed only
Appearance Add control based on: P Insertable
Stock Properties {none) w
Miscellaneous status:
[nwisible at run time
[acts like buttan
[acts like label
Click here for unsupported Smart Device Options
[< Previous] [ek =] [Finish] [Cancel]

12) On the next tab (“Stock Properties”), leave all the options empty and select “Next”. These
options are display properties that the Wizard will implement for you automatically.
Generally, each property will be added after Wizard is complete. If you want more
background information, consult the Microsoft documentation.

After clicking “Finish”, the Wizard will auto-create most of the code needed for your new
display. Examine your “Solution Explorer” view... It should now contain the new display
object by name. You’re half way home now.

2.1. Adding Properties to the Display

Now it’s time to add “Properties”. Think of properties as “data injection ports” or
“interface plugs”. They are really just any attributes of your display (such as text color, needle
angle, or scale factor) that you want the user to be able to change or animate. To give a concrete
example, the included demo project is code for an “Attitude Indicator” that simulates an aircraft
dial. It has properties for “Roll”, “Pitch”, and “Heading” as well as “SkyColor” and
“GroundColor”. Any property that you include in your display will be an “access point” on
which the user can modify its contents/characteristics/behavior. Changing the “Pitch” property in
my attitude indicator example would, as expected, cause the display to rotate its graphics to
indicate the new pitch angle. The magic of building an ActiveX control is then to understand the
“scope” of your control’s behavior, and to provide your users every property that you foresee
them changing (within reason, don’t go overboard); and also to supply code that responds to
these property values and outputs the appropriate response (i.e. draw attitude indicator display at
the current value of the roll, pitch, heading, skycolor and groundcolor properties). When this is
complete, the user can drive any of these properties, with data from IADS, simply by
dragging/dropping a parameter on your newly created display; or they can set any of these
properties to a constant value using the “right-click” properties sheet of the display. The best part
is that all you have to do is worry about what properties to add and how to implement them, and
IADS will take care of ALL of the data related issues.

1) Now, make sure that you are in the “ClassView” tab of the VS2005 workspace. To add a
“Property” to your new control, right click on the “IXXXXX” where “XXXXX” is the name
of your newly created display (look for the little “magnifying glass” icon). Select “Add
Property” from the popup menu.

* MyhctiveXControl - Microsoft ¥isual Studio

File Edit View Project Buld Debug Data Tools Window Community Help

-2 % B9 - B | P Debug - Win3z

)

Ol = |F-
<Search> - d =

Elugﬂ MyActiveXControl
: =4 Global Functions and Variables
= Macros and Constants
Cﬁ DisplayMame

0@ CMyactiverControlModule

3 MyhctiveiCon 8 Go To Definition

@ IDisplayMame
‘gﬂ fwdctiveRControl

+

Go To Declaration

<&l

Browse Definition

4+

Find all References

&

Filter To Tvpe

| Add v Add Method. .

2) Inthe Add Property Wizard, set the property type to the desired data type (double in this
example) and the name of the property (Roll in this example) and click “Next”.

Add Property Wizard - MyActiveXControl

-
u" Welcome to the Add Property Wizard

Property bype: Property name:
- ‘ |ROII

Mames
IDL Attributes

Return bype:
[HRESULT |

Function kype:
et function Put function

(%) PropPut () PropPutRef

Parameter bype: Parameher name:
Oin | v| | Add
out
REemave
< Previols [Mext =] [Firish] [Cancel

3) Inthe last page of the Add Property Wizard, leave all the options as default except the

helpstring field. This helpstring will be displayed in the lads properties sheet when the user is

setting the property, so try to provide a descriptive (but short) sentence for your new

property.

Add Property Wizard - MyActiveXControl

. IDL Attributes

Mames id: helpcontext:
IDL Attributes [1 || |
helpstring:
|ROH angle of the horizon| ‘
[bindable: [reguestedit
[source
[hidden
[restricted
[] defaultcollelem [local

["] nonbrowsable

4) When you are complete, press the “Finish” button. This will auto-create code to implement a
property named “Roll” within your new project. Repeat this process (starting from step 1) for

every property that you want to add to the display.

5) Going back to your “Solution Explorer”, you’ll see the new property code inserted into your
display’s .cpp file.

2% MyhctiveXControl - Microsoft Visual Studio

File Edit Wew Project Build Debug Data Tools ‘Wwindow Communicy Help
RS- - R = RN o - =L | b Debug - Win3z - | B
R NS NS

I Solution Explarer - Solution TyActiv... m Displayhlame. h hd Ll'll'
= éj = |(Global Scope) w || i %’Q
=
[Solution MyActiveControl (2 projects) & B¢/ DisplayMeame.cpp : Implementation of CDisplayllame f i
= 23 MyActiveXControl finclude "scdafx.h" —ll|=
E Generatec! File:s #include "Displayiame.h" 2
o[h] MyactiveXControl.h =
Oﬁj MyActivexControl_ic >§‘:
(= |LF Header Files . '
CD 1=yl
h] Displayhame.h ! TEpLETHEANS EF
] Resource.h B =
] stdafch E STPMETHODIMP CDisplaylName::get Roll (DOUBLE® pWal)
= | Resource Files ¢
% DisplayMarme. brmp A4 TODO: Add wour implementation code here
2] DisplayMame rgs -
4 MyactiveXControl.ro return 3 OK;
°‘_§j MyActiveXCantrol rgs ¥
[z} |LF Source Files - 5
C:] DisplayMame.cpp E STPMETHCODIMP CDisplayMame::put Roll (DOUBLE newVal)
€+ MyhctiveXControl.cpp i
E] MyactivexControl def 4f TODO: Add your implementation code here
MyActivedControl.id ¥
QiJSnIutinn E... Q}CIass Vigw __Eprnperty return & OK;
output « 1 x 3
2r—————= Skipped Build: Project ™
B Tiemf i e] i e Taed 1 E
S I > v
@c [$3c.. |Eo.. [Gre [FF.. | b

| T

10

6) The next step is to implement the code created for each new property we added with the Add

7)

Property Wizard. Thus, in our example property “Roll”, we will need to focus in on the

put_Roll and get_Roll functions. In preparation, we will need to add a class member variable

for each new property. For the Roll property, add a new class member variable “mRoll” to

the class with the same data type as the property (double in this example). Don’t forget to set

this new member variable mRoll to 0.0 in the “FinalConstruct” function.

For the put_Roll function, we will need to capture the incoming value and store it in a class
member variable. Once that is complete, we will call a function named “FireViewChange”

that will let our display know it needs to be redrawn. When our redraw function (OnDraw) is
called, we will then use the value contained in the class member variable to draw the display.

In addition, we will set a variable called m_bRequiresSave to TRUE, telling lads that we
wish to save our display. This is a vital step to ensuring your display is saved within IADS
when a property is changed. Notice that we only perform this code if the incoming property
value is different than the existing value of the property. The get_Roll function is easy to
implement. Simply return the value of our class member variable that we have created for

this property.

% MyhctiveXControl - Microsoft ¥isual Studio

J Solution "MyActivexContral (2 projects)
= :ﬁ MyActiveXControl
= L Generated Files
o|h] MydctivexControl.h
@€ MyhctivexControl_i.c
=~ | Header Files
1] Displayhiame.h
] Resource.h
] stdafx.h
=~ | Resource Files
S DisplayMame. brp
@ DisplayMame rgs
L MydctiveXControl.re
“&) MyActivexControl.rgs
=~ | Source Files
LS Displavhiame cpp
€+ MydctiveXControl.cpp
=] MyactiverControl.def
& MyactivexControl.id
€] stdafx.cpp
#] Displaylame.htm
[Z] ReadMe.bxt v

SRJselution E... [Class View [Property ...

Output
Show output from: Build

<

Elle Edit ‘“iew Project Buld Debug Data Inpols Window Community Help

P Debug - Winaz

T

DisplayName.cpp

A% ChisplayMame
L

~ || “@get_Rol{DOLELE * pyal)

O STPMETHODINP CDisplayMame::get Roll (DOUBLET pVal)

1

*pVal =
return 5 OK:
i
{

if { newVal == mRoll)
return 3_OK;

mRoll = newVal;
this->FireViewChange () :

return 3 OK;

<

< LRl =

(T Code Definition Windoy |23 Call Brawser | 5] Output |[FhPending Chackins |55 Find Results 1

£F TODD: Add your implementation code here
if (!'p¥al) return E_POINTER;

E STPMETHODINP CDhisplayMame::put Roll (DOUBELE newVal)

£F TODO: Add your implementation code here

this->m bRegquiresiave = TRUE;

EAN| B3
= Kz

xogoo | 3¢ | s] Janies e

-1 X

Ready

11

8) Now, when all of your properties are implemented, add your “drawing code” to the
“OnDraw” function. The OnDraw function is where you will take all the values of your class
member variables and actually draw the display content. See the sample projects for
examples in both GDI and OpenGL.

% MyhctiveXControl - Microsoft Visual Stud

- H @ K G
3]
-1 X

EE

(= | Generated Files
o 1] MyActivexControl.h
@G MyActivexContral i.c
(= | Header Files

me.,|

] Resource.h
n] stdafeh
(= | Resource Files
Displayfame.bmp
‘%] Displayhame.ras
; MyAckivexControl.rc
“é] MyActiveXControl.rgs
(= L= Source Files
DisplayName.cpp
MyActivexControl.cpp
=] MyActivexControl.def
X MyActivexContral.idl
f-j stdafx.cpp
%] Displayhame. htrn
[Z] readme .t
B~ A MyActiverControlPs
= [Generated Filss
26 didata.c
@G MyActivexContral i.c
:f-j MyAckiverControl_p.c v

r_‘iJSDlutiUn E.. ?}CIass View __EPrDDsrty

Cutput
Show autput From: Build

File Edit W¥ew Project Buld Debug Data

/EisplayName.h DisplayMame.cpp -~ X

Tools Window Community Help
=l - =L b Debug - Winz2 - [StrCmp = |.‘i| i
1 3 @ G L) s

K
3

“’ig Chisplayhlame

= v

- |2 MyActiveXControl - J]

|~

jCode Definition Window ';ﬂcal\ Browser | [=] Qutput &Pendlng Checkins % Find Resulks 1

/4 IDisplaylzme
public: B
HRESULT Onbraw(ATL DRAWINFO& di)
i
RECTE ro = *(RECT*)di.preBounds:
f¢ Bet Clip region to the rectangle specified by di.prcBounds
HRGM hRgnOld = NULL:
if (GetClipRgn(di.hdcDraw, hRgnOld) !'= 1)
hRgnOld = NULL;
hool bBSelectcOldRgn = false;

wog|oa | 3 | muod g 1anlas EJ;_

HRGH hRgnMNew = CreateRectRgnirc.left, ro.top, ro.right, rc.hottom);

if (hRgnNew != NULL)
1

b3electCldRgn = (ZelectClipRgn(di.hdcDraw, hRgnMew) != ERROR);
H

Rectangle (di.hdcDlraw, rc.left, roc.top, ro.right, rc.bottom):;
FetTextlilign (di.hdeDraw, TA CENTER|TA_BASELINE);

LPCTSTR pszText = _T("ATL 3.0 : DisplayMName"):

TextOut (di.hdcDraw, (rc.left + ro.right) 7/ 2, (ro.top + roc.bottom) /7 2

if (bZelectOldRgn)

SelertrlinRem i hdrliram RRAMOTAY - =
| >

';a-ziﬂ

Ready

12

1)

2.2. Ensuring Your Display is Saved Within IADS

Go to your “.h” file (SampleDisplay.h in this example) and insert the code “public
IPersistPropertyBaglmpl<CYourClassName>" as below. This will allow the control to
“save” in IADS properly. Don’t forget to add a “comma” to the end of the line above this

new line.

% MyhctiveXControl - Microsoft Visual Studio

File Edit “iew Project Buld Debug Data Tools ‘window Community Help

A-E-EhHe % BB & - 5L b pebug - Win3z - | [# Strcmp x| &l s
3 % b a Sl= =l 03 BB O g

Solution Explorer - MyactivekControl = & X || - DisplayName.h - X Ll'i

L 2 | [=] |Vf3CDispIayName vH v| 5‘

=

= [MyActiveXControl #|| Eclass ATL_NO_VTAELE CDisplayNsme =2

= 1 Generated Files public CComObjectRootEx<CComSingleThreadtodels, 2

ot MyActiveiContral.h public IDispatchImpl<IDisplayNeme, &IID IDisplayMeme, SLIBID MyhctiveXCec | 3

Py _ _ @

f J :\y.ﬂc.l;weXControl_\.c publiz IPersistStreamInitImpl<ClhisplayMName:, ¥

e EED_EFTIE; h public IDleControllImpl<CDhisplayName:, _:’|

ﬂ R::Diltc:nlfl public I0leQhjectImpl<CDi=playlame>, é

' public I0leInPlacelcetiveCbhljectImpl<CDisplayName:, =

1] stdafx.h

= [Resource Files public IViewObjectExImpl<CDisplayNames,

pubilic I0leInPlaceChjectWindowlessImpl<ChisplayNames,

% DisplayMame, bmp
j DisplayMame.rgs public ISupportErrorInfo,
3:,] MyActivexContral, io public IPersistitoragelmpl<ClisplayMNames,
@ MyAckiverContral.rgs public ISpecifyPropertyPages Inp l<ChisplayMName:,
2+ & Source Files public IDuickictivateImpl<CDisplayName:>,
Ej DisplayName. cpp [#ifndef _WINZZ_WCE
Cﬁ MyAckivexControl.cpp - public IDataCbjectImpl<CDisplayName:,
2] MyActiverControl, def Hendif
&) MyActivexControl.id public IFrovideClassInfolImpl<&CLSID DisplayMame, NULL, &LIBID Myhctive:
€] stdafx.cpp O #ifdef WIN3Z_UCE // IdhjectSafety is reguired on Windows CE for the contr
Displayhlame. htm I public IobjectSafetylmpl<CDisplayMames, INTERFACESAFE FOR UNTRUSTED CALLE
ReadMe.txt fendif - - -
& EmynctlvaXCnntr?IPS public CComCoClass<CDisplayNate, &CL3SID Di=playName>,
= | Generated Files) -
e"—ﬂ dldata.c public CComControl<CDisplayName:,
oﬁj My ckivexControl_i.c
R WA ki e kel o e s i o
DiJSnIutinn E... T_/gclass Wi __EPrnperty e |1 >
Output >~ 1 X
Show output fram: Build = G | 5y | Sk =
A

2»Project not selected to build for this solution configuration
Build: 1 succeeded, 0 failed, O up-to-date, 1 skipped

Code Defirition Window |'*2 Call Browser |[=] Output ([FhPending Checkins |55 Find Results 1
¥ 3

Euild succeeded Ln 36 Col 1 Chi INS

13

Likewise, you need to add “COM_INTERFACE ENTRY (IPersistPropertyBag)” to the
“Com Map” in the “BEGIN_COM_MAP” area of the code as below. This is also needed to
allow the control to “save” in IADS.

* MyActiveXControl - Microsoft Yisual Studio

File Edit View Project Build Debug Data Tools Window Community Help

- S a % @9 + =L b Debug - Winaz - [StrCmp L=
T h s iEE = 2O a3 B Q) :

Solution Explarer - MyactiveXContral » B X isplayName.h - X U."

Bl = |ﬁgcoisplaymame "“ v| |

=

= gﬂ My ActiveXControl G COM_INTERFACE_ENTRY (IViewChject) f "%‘

=2 & Generatec!Fﬂes COM_INTERFACE_ENTRY(IOleInPlaceChjectWindowless) B

o[k MyactiveXContral.h COM_INTERFACE ENTRY {IOleInPlaceObiect) 3

fcj anc-fwexcontml_llc COM_INTERFACE ENTEYZ (ICleWindow, IQlelInFlaceChjectWindowless) S

B = "EBD?”IE'E:] " COM_INTERFACE ENTRY(IOleInPlacelctiveChiect) s

isplayMame. COM INTERFACE ENTRY(IOleControl) g

1] Resource.h - "~ i

=

COM_INTERFACE ENTEY(IOleChject)

COM_INTERFACE ENTRY(IPersist3treamlnit)

COM_INTERFACE ENTRYZ (IPersist, IPersistitreamlnit)

COM_INTERFACE ENTRY (ISupportErrorInfo)

COM_INTERFACE ENTRY (ISpecifyPropertyPages) -.

] stdaf.h
= | Resource Files
DisplayMame.bmp
‘2] DisplayMame.rgs
4 MyhctiveControl.re

ngj My ckivesContral.rgs COM_INTERFACE ENTEY(IQuicklctivate)
= |LF Source Files COM_INTERFACE ENTRY(IPersistStorage)

C:] Displaytame.cpp o #ifndef _WIN3Z WCE

B:] MywactivexControl. cpp - COM INTERFACE ENTRY(IDataChject]

=] MyactiverControl def fHendif

] MyactiverContral.idl COM_INTERFACE_ENTRY (IProvideClassInfo)

‘:_1 stdafxz.cpp COM_INTERFACE_ENTRY|IProvideClassInfoZ)

Displayhame. htm [#ifdef WIN3Z_WCE // IChjectSafety is required on Windows CE for the conte
. ReadMe bt | COM INTERFACE ENTRY IID(IID IcChiectSafery, IChiectSafety]
B (34 MyActiveXControlPs B #endif - - -
= |F Generated Files
&C+] diidata.c
ocj My ctivexControl_i.c FHD_COM_MAP ()
-

- [R PRSP S - _ﬁ
C;iJSolution E... [EgClass View [Property ... 4 >
Output -« 0 X
Show output fram: Build I RS R =R N T

Z=Project not selected to build for this solution configuration ~
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 1 skipped ========== »
jCode Definition Window L;EICaII Browser | [=] Output 1:1=1ijli‘|3ncling Checkins _ﬂFind Results 1
Ln &1 Col 1 chi INS

Ttem(s) Saved

14

3) For every property to “save”, add it to the “BEGIN_PROP_MAP” area of the code as below.
The number corresponds to the property id that’s defined by the wizard in the “.idl” file of
the project. Examine your “.idl” file from the “Solution Explorer” tab of the workspace for
the correct number. Properties in your “PROP_MAP” will get saved by IADS and reloaded
when the display is created in a saved Analysis Window.

%% MyhctiveXControl - Microsoft Yisual Studio

File Edit Wew Project Buld Debug Data Tools ‘Window Community Help

eC:] MyfctivexControl_i.c
= |LF Header Files
] DisplayMame.h
h] Resource.h
0] stdaf.h

BEGIN PROF_MALF (CDisplayName)
PROP_DATA ENTRY (" _cx'", m sizeExtent.cx, VT UI4)
PROP_DATA ENTRY (" _cw'", m sizeExtent.cy, VT UI4)

- [Resource Files o /f Example entries

S DisplayMame.bmp i PROP_ENTRY ("Property Description®, dispid, clsid)
@ DisplayMame.rgs - A PROP_PAGE (CL3ID_StockColorPage)
_:; MyhckiveRControl.rc PROP_ENTRY ("Roll™, 1, CL3ID_NULL)
“&] MydctiverControl.rgs END_PROP_MAP ()
= [Source Files
€] DisplayMarne.cpp

C:] MywactivexControl. cpp BEGIN_M3G_ MAP (CDisplayName)
=] MyhctiverContral.def CHAIN MSG_MAP (CComControl<CDisplayNawme:)
] MyactiverContral.idl DEFAULT REFLECTICN HANDLER()
€] stdafx.cpp END MSG MAP () -
#] DisplayMame, htm = Handler prototypes:
i E R?ad""e-tXt // LRESULT MessageHandler (UINT uMsg, WPARLM wParsw, LPARAM 1Parsw, EBOOLE
= (A MyActiveXControlPs // LREESULT CommandHandler {WORD wNotifyCode, WORD wID, HUND hindCtl, BOOL:

=~ |F Generated Files
a6+ didata.c
ch My ctivexControl_i.c

#f LBEZULT MNotifyHandler{int idCtrl, LPHMMHDR pnmh, BOOL& bHandled):

jCode Definition Window L‘;_‘E'ICaII Browser | [=] Output ﬁpending Checkins _ﬂFind Results 1

A-EH- S % BaBE - &~ b Debug - Win3z - | [StrCmp = ._3] e
Dk, e EEIZ2 O 208 B O i o
Salution Explorer - Solution 'Mwdctiv.,, » 1 X DisplayName.h - X
=) .@ [Z “I% CDisplayMame w W
= [Zd MyActiveXControl ~ gendif al
., \ -~
=+ | Generated Files COM INTERFACE ENTRY(IPerziztPropertyBag)
a|h] MyAckiveContral.h END COM MAP 0 -

22 Bl uhekines e anken] oo b /4 ISupportsErrorInfo 2
-:jSolution E.. '__fgclass Wigw ~:;1_=|Property... £ >
Output -« 0 X
Shaw output fram: Build - | B | S =

Z=Project not selected to build for this solution configuration Rl
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 1 skipped ========== ~

*¥0R00 | 30 [Ju0jdx g Jaaas E_;-

Ttem(s) Saved Ln 90 Col 1 Chi NS

4) At this point, you can begin modifying the code in the display to perform your specific needs.
For more background on how to build an ActiveX display download the Sample ActiveX
Display projects from the Symvionics web site and read the comments within the code:

http://iads.symvionics.com/MainPages/DownloadsPage.htm

If you have any further questions, you can search the lads Google Group or post a question:

http://groups.google.com/group/iads

15

http://iads.symvionics.com/MainPages/DownloadsPage.htm
http://groups.google.com/group/iads

3.

Adding Your New Control to IADS

1) Press the “Display Builder” button on the IADS “Dashboard” in the lower right hand corner

of the screen. The “Display Builder” dialog will appear with icons of components that you
can use to build your displays (including your new ActiveX control).

FES:

See message log

FAutomated Analysis Disabled I

Sim and S5tim

Aw.F-TueJun1512:54:28

ExampleA=x0GLControl

FarameterTool |0isplay Builder||ZhangeDesktop| Performance
Global Time | Message Log || Sawvelesktiop Log OHf
lads Logs Corfiguration ||HideDashbozrd Help

2) Create an empty Analysis Window by dragging the upper left icon on to your desktop and

T Display Builder

|ﬁ\a Dis

CEIX

playsl ActiveX Cuntrulsl Alignmentl

T = Panel

Falder

ABLOOE el —

| oo

dropping it. You can optionally name your window here.

16

3) Now let’s add your new control to the “Display Builder”. Click on the second tab in the
display builder named “ActiveX Controls”. This is where all ActiveX displays will reside,
ready to be dropped upon your newly created Analysis Window. Notice that there are only a
select few ActiveX control icons on this tab of the display builder. If the display builder were
to show all of the controls available on your system, the icons would fill several pages of this
size. In order to add your new control, you must “right click” on tab (somewhere where there
are no icons). This will activate yet another dialog containing both the “IADS” supplied
ActiveX controls as well an entire list of all the ActiveX controls on your system (including
your newly created one!). Click on the “All Controls” tab of this new dialog and find your
new control. The name will be the “ProjectName.ObjectName” as discussed earlier in this
tutorial. In the example code, my control is named “MyActiveXControl.DisplayName.1” (.1
is the version). Click “Ok™ to add your display to the display builder. This only needs to be
done once for each new control that you wish to debug/add in IADS.

=il

Data Displays ActiveX Controls |Alignment|
sEos% a8
: | ER© ™
TR

Note: If you can’t locate you display in the “All Controls” list, try checking your “.rgs” file
in your VS2005 project in the “workspace” fileview. It contains an entry named
VersionIndependentProgID. This is where VS2005 stores your “Progld” (Program ID) for
the project.

Components El

IADS Controls All Controls]

O mswiLess WLFrame Lo
O mswiLess wLHScrol

O rswLess. wilisk

O mswLess, WLOption

O mswiLess, wLText

O mswiLess wLvscrol

Orwsare. MusampCed, 1

O mwsamp MwsampCtrl.2

O myactiverContral. DislogBasedDisplay

MyactivexControl, DisplayMarne [™ Show Checked Only
D MEOTERISSETUP. MeoterisSetupCtrl. 1

[MetMeeting. &pp Uncheck &l

M rie TARS0hnine TARSMHamARY) '

Location: C:\MpéctiverControlDirecton\kpdctivex Contral\Myd.ctivek<ControlDebug

ok | Cancel |

17

Debugging Your New Control in IADS

Place a break point in your “OnDraw” method for testing.

%% MyhctiveXControl - Microsoft Yisual Studio

File Edit Wew Project Build Debug Data Tools Window Community Help

. = b Debug - Win32 + [# Strcmp R e, e
1385 A 5
~DisplayName.h - ¥ Lli‘
e % ChisplayName | | OnDranATL_DRAWINFO & di) B
=
= EEMyActiveXEontrol ~ /¢ IDisplaylame =lls
= | Generated Files public: L g‘
olh] MyhctiveCantrol.h 5 HRESULT OnDraw(ATL DRAVINFOS dij 2
o6 MyactivexControl_i.c ¢ - =
= ‘—"';a”:‘les Q RECT& re = *(RECT?)di.proBounds: Z’t
J me.| =]
L] [y— ;;GEEERCL;TE!E?Q;ET:LFD the rectangle specified by di.procBounds %
] stdaf.h . an- o L
- 55 Resource Flles if (GetClipRgnidi.hdcDraw, hRgnOld) =1
% Displayhiame.bmp hRgnold = NULL;
_jDisplayNamE.rgs bool b3electOldRgn = false;
2 MyhckiveXContral.rc
"gaMyA:twexControl,rgs HRGN hRgnNew = CreateRectRgn(re.left, re.top, roe.right, ro.bottom) !
=~ [Source Files
Cj DisplayMame cpp if (hRgnMNew != NULL)
€] MyhctiveXControl.cpp i
MydckiveXControl.def hSelectOldRgn = (SelectClipRonidi.hdeleaw, hRgnMNew) !'= ERROR):
MyactiveXControlidl 3
] stdafx.cpp
Displayame. bim Rectangle (di.hdelraw, rec.left, reo.top, ro.right, ro.bottom)
33 Readhle, bt ‘ SetTexthlign(di.hdoDraw, Ti CENTER|Ti BASELTHE) ;
= v Mf_“ét“’exc:!tflps LECTSTR pszText = T{"iTL 8.0 : DisplayName");
|7 Generated Files) - ; i
o6 didata.c K. TextOut (di.hdeDraw, (rc.left + reo.right) / 2, (ro.top + ro.bottom) [/ 2
o€ MyactivexContral_i.c
QC:] MyactiveXControl_p.c w if (b3electOldRgn) 3
= SelertrlinRem (dd hdeliraw hRemnldi - hs
Dgsnlution E... [E}Class View xlproperty... 13 ¥
Cutput -« 1 X
Show output from: Build =LAl Ll Sh

[T Code Definition tWindow l,;EICaII EBrowser | [Z] Qutput EﬁPendmg Checkins %Flnd Resulks 1

Ready

18

2) In Visual Studio, select the “Project->Properties” drop down menu. Under the
“Configuration Properties->Debugging” tier, pick “lads.exe” as your “Command”. The
lads.exe is located in your “C:\Program Files\Iads” directory. Add “/local” to your

“Command Arguments”. Build your project and click on the “Go” command. Iads will start.

MyActiveXControl Property Pages

Configuration: |Active(Debug)

Comrmon Properties
[=)- Configuration Properties
General
Debugging
CiC++
Linker
Manifest Tool
Resources
MIDL
#ML Document Generatar
Browse Information
Build Events
[=- Custom Build Skep
General
‘Wweb Deployment

N | Platform: |Active(Win32) hd | [Configuration Manager...]
Debugger to launch:
| Local Windows Debugger w |
Command C:YProgram Files\IADS ClientWorkstationilads, exe A
Command Arguments Nocal
‘wiorking Directory
Attach Mo
Debugger Type Auto
Environment
Merge Environment ‘fes
SGL Debugging Mo
Command
The debug command ko execute,
[OF] [Cancel] [Apply]

3) Drag-n-Drop your display to the new Analysis Window as explained previously. Your break

point should now hit in the debugger. You can now step through your rendering code if

necessary.

19

5. Deploying your New Control

When it comes time to deploy your new control to users on other PCs, you need to
consider a couple of issues. One issue is that your control may require some auxiliary dlls that

are not available on the other systems. If that occurs and the dlls are missing, the control may not

operate. To help minimize this possibility, you must always build your new control dll in
“Release” mode. You should never distribute a control dll that has been compiled under the
“Debug” mode. The debug mode uses libraries that will most certainly be missing on any

machine without Visual Studio installed. Beyond that, it’s always best to ‘statically link” all the

runtime libraries. Also, since we’ve used ATL to build this display, we will need to statically

link the ATL library as well.

1) In Visual Studio, select the “Project->Properties” drop down menu. Make sure that the
“Configuration” drop down is set to “Release”. Under the “Configuration Properties-
>C/C++->Code Generation” tier, set the “Runtime Library” to “Multi-threaded (/MT)”.

SampleAxControlVS2005 Property Pages

B) |

Configuration: | Release

| Platform: |Active(Win32)

[#- Common Properties -
E| Configuration Properties

- General

- Debugging

[] = C/C++

(| - General

- Optimization

I - Preprocesser

- Code Generation

m

- Language

- Precompiled Heade
- Qutput Files

I - Browse Information
- Advanced

. - Command Line

i Linker

i Manifest Tool

+- Resources

i MIDL

i XML Document Genera
- Browse Information

(O O O O O N

A

P
4 1 3

'l l Cenfiguration Manager...]

Enable String Pocling
Enable Minimal Rebuild
Enable C++ Exceptions
Smaller Type Check
Basic Runtime Checks

Runtime Library

Struct Member Alignment

Buffer Security Check

Enable Function-Level Linking
Enable Enhanced Instruction Set

Floating Point Model

Enable Floating Point Exceptions

Runtime Library
Specify runtime library for linking.

Mo

No

Yes (fEH=c)

No

Default
Multi-threaded (/MT)
Default

Yes

No

Mot Set

Precise (/fp:precise)
Mo

(/MT, /MTd, /MD, /MDd)

oK

H Cancel ” Apply

20

2) Under the “Configuration Properties->General” tier, set the “Use of ATL” to “Static Link to

ATL”
i‘éample.ﬂx:'('Control‘u’SZ(JOEr ProElrty Page‘s_l | h I | &Iéjw
Ceonfiguration: |Release VI Platform: IActive(WinBZ] " I Canfiguration Manager... ‘
#- Common Properties | |B General
= Configuration Properties Output Directory $(ConfigurationName)
- General Intermediate Directory $({ConfigurationName)
- Debugging Extensions to Delete on Clean *obj*ilke* tb* i th* tmp*rsp* pg e pgd: S(TargetP
-G/ Build Log File $(IntDir)\BuildLog.htm
Ge"_era_l) Inherited Project Property Sheets
-~ Optimization =|| |B Project Defaults
----Preprocessor. Configuration Type Dynamic Library (.dIl}
E:ndgeu(:;r;eratlon Use of MFC Use Standard Windows Libraries
 precompiled Heade Use of ATL : Static Link to ATL [=]
 Output Files Minimize CRT Use in ATL Mo . i
. Browse Information Character Set Use Multi-Byte Character Set
. Advanced Commmoen Language Runtime support No Commoen Language Runtime support I
. Command Line Whole Program Optimization Mo Whole Program Optimization
- Linker
- General
- Input
- Manifest File
~Debugging Use of ATL
- System - | | Specifies how ATL is used by the configuration.
] N b
[OK] I Cancel I I Apply J
P — = = —

3) Once you’ve made these changes to your project, you should rebuild your ‘solution’. Make

sure once again that your current configuration is set to “Release” and then select the “Build-
>Rebuild Solution” drop down menu option. After this step is complete, your control dll
should be in your project “Release” folder. It should now be ready to deploy on another
system.

The control dll will need to be copied to the other PC and ‘registered’. In order to register the
dll, you’ll have to run the ‘regsvr32.exe’ program. One easy way to accomplish this is to
double click on the dlIl in Windows Explorer. When asked what program to execute on the
dll, navigate to the Windows\System32 directory and choose the regsvr32.exe file. This
procedure may be different if the operating system is a 64 version. Please consult the online
documentation for specifics.

If the dll fails to register at this point, we’ve most likely failed to statically link the needed
dlls. We can investigate which dlls are missing by using the “Dependency Walker” tool. The
Dependency Walker program is located within the Microsoft Visual Studio\Common\Tools
directory and is named “Depends.exe”. Copy Depends.exe from your development PC to the
target PC and run the program. From the File drop down menu select “Open” and choose
your control dll. Examine the module list in the bottom window pane. Any missing
dependent dlls should show up with a question mark. Search for those dll names on the net
and find out their purpose. It might help you narrow down what solution setting you’ve
missed. It is also possible that the missing dll is a private library that you are using, in which
case you’ll need to either static link or copy that dll to the target machine as well.

21

