Creating an IADS
Custom Derived Function
using Visual C++ 6.0

April 2010
SYMVIONICS Document SSD-IADS-045
© 1996-2010 SYMVIONICS, Inc.
All rights reserved.

*
SYMVIONICS in
Telemetry Systems

A

Table of Contents

INtrOAUCEION...cueeeieeeiteiiiiniinteenneneeceeeseecaessaeecseessesssesssansssessssesssnssssesssassssesssases 3
Creating Your Function Using the ATL COM Wizardccoccveerecescnneccccsnneecsens 3
How to Access Your New Function in IADScieieeninnseensennseecsensnccseecsnnee 12
How to Debug Your New Function in TADSciiinveiiiniivnniicsssnnicsscsnneecssssnsnees 16
AdVANCEA TOPICS cevvrrernricssrninssnnessnncssrncssnncssssssssssesssssessssesssssssssssossssssssssssssssssssssss 17
5.1. Initialization and Execution of your Custom Function...................cc.ccceeveevueenn.nn. 17

5.2. Returning Multiple Results from your Custom Function................c.cccccocceueeenne... 20

1. Introduction

This document assumes you are using Microsoft Visual C++ 6.0. The tutorial has not yet
been attempted on a newer version, although it may still apply. This instruction guide will cover:
creating a new function using the ATL COM Wizard, how to access your new function in IADS,
and how to debug your new function in IADS.

2. Creating Your Function Using the ATL COM Wizard
1) Open up Visual C++ and Select “File -> New”.

2) Choose “ATL COM AppWizard”, and pick your project name and location.

New @E|

Filez Projects | wWorkspaces | Other Documents |

Appiwdiz R]win32 Application Project name:
8 fudio Effect DMO WwWizard j\-\-‘in32 Console &pplication |MPFUHC“D"'IGTDUDN3F“E
Igj Clugter Resource Type wizard |E\| Winde Dynamic-Link Library

E Custom Apphizard :EI Win32 Static Library Logation: _
[atabase Project |E:'\MyFunchunD|rectury'xMyFunc J

U D evStudio Add-in wizard
[} Directtusic Tool wWizard
Q Direct< 3 Apphfizard * Create new workspace
Estended Stored Proc wWizard '
[SAPI Exrtension Wizard T
5] Mk efile | -
MFC Activel Controf/fizard
(8] MFC Appwizard (dl]
MFC Appifizard [exe]
X New Database wizard
'} Utility Praject
< ¥

Platfarms:
|wm32

] | Cancel |

The project name you choose will become part of the function identifier name (aka
ProgID, see inset). When it comes time to use your function in IADS, users will call your new
function in a derived equation based solely upon its ProjectName.ObjectName (we’ll add the
specific object name later). Plan on creating many functions in one “project” (most common and
easier to manage the code). One way to look at it is that the project name is akin to the “Genus”
of your function, so shoot for generality. Consider prefixing the project name with your
organization like “Nasa” or “Lockheed” and the type of functions you’ll be adding (example:
NasaFluidFuncs). Choose wisely and press OK when you are ready to continue.

Note: Microsoft refers to your function’s name as its “ProgID” (aka Program ID). This is the
string equivalent of your GUID (Global Unique Identifier) for the function. These Ids are placed
in the Microsoft registry (directly from your project’s “.rgs” file), allowing your object to be
created without any knowledge of the location of your “DIl” on the file system. Of course, this

assumes that it is registered using the “regsvr32” program (consult the Microsoft
documentation).

3) After pressing “Ok”, the “ATL COM AppWizard” dialog will appear as below. In step 1,
choose “Dynamic Link Library (DLL)” and click Finish. Every function that runs in IADS is
DLL. This allows for maximum speed computing calculations. Press the “Finish” button on
this wizard and then press “Ok” on the next dialog that appears.

ATL COM AppWizard - Step 1 of 1

Thiz ‘Wizard creates an ATL project without any
initial COM objects. After completing this \Wizard,
Setas A uze the Mew ATL Object command from
_ ClazsView to specify the type of object pou would
Mew Claz like to add to this project.

H g NewaTL

[e
L 4 Mew Fold Server Type
CI il I f
| Dacking

Hide £~ Executable [EXE)
Fropertie " Service [EXE)
? ? I~ Allow merging of proxy/stub code
O aye,
St I Support MFC

L I~ Suppart MIS

< Back | Hest > | Finish I Cancel |

4) Next, go to the “ClassView” tab in DevStudio’s workspace view and right-click on the
project name. Choose “New ATL Object”.

*«/ MyFunctionGroupName - Microsoft Visual C++

“ File Edit View Insert Project Build Tools Window Help

H’@ ‘ = L ‘ & B2 | Elw (- ||E|E = ||}]t|mValianllnpuLAlgumenls :

i
[EREE MyFunctionGroupName claszs I

Set as Active Project

" New Folder. ..

.g,w Add to Source Control...

|7 Docking View
Hide

Properties

B8 ClassWiew I HesourceVlewI Flle\u"\ewl

5) When the ATL Object Wizard dialog appears, choose “Simple Object” and then click
“Next”.

ATL Object Wizard ?X
Category Objects
Objects *h ;B ~
Controls 04% d F
Mizcellaneous =
Data Access Addin Object Intemet
Explar...
22 ©
ActiveX Server MMC Snapln MS
Component Transacti..
v

Next > | Cancel J

6) On the first tab, enter the name of your function in the “Short Name” field. The wizard will
fill out the rest of the tab automatically. For this example, I used “FunctionName” as the
short name. The name entered will be combined with your project name and will present the
final function name inside of Iads (ProjectName.FunctionName) as explained on page 1. See
the “ProgID” field in your dialog for your final function name. Press Ok to continue.

ATL Object Wizard Properties

Names I.Httributes]
E++ EDM
Short Name: |FunctionNanne] CaClass: [FunctionM ame
Class: |CFunctionMame Interface: IW

H File: |FunctionMame.h Type: |FunctionM ame Class
CFP File: |Functioname.cpp Prog | |MyFunctionGraupha

ok | cancel |

7) At this point, we need to take care of the interface portion of the function. Basically, we’ll
need to implement the defined “IladsFunction” interface so that the function will be
compatible with the Iads environment.

Download the ComFunctionHelper files on the Symvionics web site:
http://iads.symvionics.com/Downloads/SampleFunctionVC.zip

After you’ve downloaded the zip file, unzip its contents into your project folder. While
unzipping, you’ll notice a file called “IadsFunction.idl”. That’s the file we’ll use to
implement the interface.

8) Now we’ll add the TadsFunction.idl to the project. Click the FileView tab at the bottom of the
Workspace viewer.

< I} | >
™8 ClassVi... I 4] Resour... I] FileView I—

9) Expand your project files and right click the “Source Files” folder then click the “Add Files
to Folder”

*+ MyFunctionGroupName - Microsoft Visual C++

JJEiIe Edit Wiew Insert Project Build Tools Window Help

@ sud@ @ ee o o | mER | Rfave

212

Wwiorkspace MpFunctionGroupMame': 1 project]
E|--- MyFunctionGroupM ame files

- & File

Functio (5 New Folder. ..

Y Add Files to Folder...

byFune

MyFune Settings. ..

MyFune o¥ Add to Source Contral...

St

(2 Header Fils |w Docking View

[C1 Resource F Hide

Properties

< |
B2 Classiew I E] HesourceViewI Filetigw

10) In the File Name box, type “*.id]” and then the enter key to show the Interface Definition
Language files. Choose “ladsFunction.idl” and then press the Ok button to add the file into
your project.

Insert Files into Project

Look in: I&) MyFunctionGroup Name j 4= |‘=_°F v
ICDebug

E] MyFunctionGroupMame.idl
= 1adsFuncton. il

=] 1adsTime.idl

=] 1ads.idl

File name: |Iad5Function.idI OK I
Fles of type: [Cos Fles (cicppi coctichithonie) | Canesl |

IFiIes will be inserted into folder titled 'Source Files' in project 'MyFunctionGroup am

|

11) Build your project. After building the project, a “typelib” file will be created. We can use this
typelib file to implement the interface. The typelib file is simply a compiled binary version of
the IDL file.

*+.. MyFunctionGroupName - Microsoft Visual C++

JJ File Edit View Insert Project |Build Tools Window Help

IEIEEEINEY =t

Build MyFunctionGroupMame. dll

- Rebuild All
Workzpace MyFunctionGroug P
=% MyFunctionGroupMam atcn Buid...
ERa Source Files Clean

Functionh ame.cp . R
ladsFunction.idl rEaR
MyFunctionGroup Debugger Remote Connection. ..

MyeFunctionGroup

]
MyFunctionGroup * Execute Ctrl4F5
MuFunctionGroup
Stddfx.cpp }
[#-{Z2] Header Files Configurations...

#-[_] Resource Files Profile
[+ (1 Extemal Dependencies

Set Active Configuration. ..

12) Go back to the ClassView tab of the Workspace viewer. Right click on the “C[your function
name]” class object and then choose “Implement Interface...”

*.. MyFunctionGroupName - Microsoft Visual C++

JJ File Edit View Insert Project Build Tools Window Help
JJ% |D”' = ﬁ ‘ & B2 | Xy (6. ”E,E%‘ |Eat|m\"alianlln|

alx
EI- MyFunctionGroupM ame classes |

-0 |FunctionN ame Go to Definition
#-=0 ||adsFunction Add Member Function...
(] Globals Add Member Variable...
Implement Connection Point. ..
ﬁ References. ..
ﬁ Derived Classes...
Base Classes...
Add to Gallery
[j‘ Mew Folder...

B8 Classview | [§] Resourc

Groun hv Arress

13) In the Implement Interface dialog, click the “Add Typelib...” button.

Implement Interface

MYFUNCTIONGROUPHAMELiD
Cancel |
Interfaces
Add Typelib |
Could not find appopriate interface in the type libramy

14) Now click the “Browse...” button

Browse Type Libraries

Aveailable Type Libraries oK

O 145 Helper COM Companent 1.0 Type Librar1.0 4 Cancel
O 145 RADIUS Pratocol 1.0 Type Library(1.0] W
O .Cyatek ProgressBar Control 1.001.0) Browse...
O) ideoSoft vsFlexd Control(3.0)

O emobat Accezs 2.0 Type Libra3.0)

O AcrolEHelper 1.0 Type Library(1.0]

O actionz 1.0 Type Libramy(1.0]

O active DS Type Library(1.0]

O &ctive Setup Contral Librar(1.0)

O ActiveMavie contral type library(1.0)

O activeScan Instaladar Type Library(1.0)

< | ¥

Tl

| £

Location :

15) Browse to the “Debug” folder within your project (or whichever configuration you just
compiled, default is Debug) and choose the “TadsFunction.tlb” file.

Look in: |@Debug j & =k B~

b 2dseuncton.th)

@] MyFunctionGroupMame. dll

File name: |IzdsFunction tib Open

Files of type: |T‘,lpeLibrc|ries ("t ~.exe ~dll ~.ocx *och) j Cancel

16) Check the “IladsFunction” interface and then press the Ok button.

Implement Interface

MYFUMCTIONGROUPHAMELib ladsFunctionLib
Cancel

Interfaces

ol

Add Typelib...

lladsFunction

17) Go back to the FileView tab in the Workspace viewer and open the “[Function Name].h” file.
Comment out the line towards the top of the file that resembles:

#import "C:\MyFunctionDirectory\MyFunctionGroupName\Debug\ladsFunction.tlb" raw_interfaces only,
raw_native types, no_namespace, named_guids

Then add: #include “ladsFunction.h”

*« MyFunctionGroupName - Microsoft Visual C++ - [C:\...\FunctionName.h]

5] Eile Edit View Insert Project Build Tools Window Help

3= EHa T E B | G4 |mVariantinputArguments | REIREL]
s FunctionMame.h : Declaration of the CFunctionHame
=-{3 Source Files - #ifndef _ FUNCTIONNAME H

unctiont ame. cpp #define _ FUNCTIOWNAME H

tinclude "resource. h" <7 main symbols

MyFunctionGroupName.cpp sofimport "CosMyFunctionDirectorysMyFunct ionGroupHamnesDebug~IladsFunction. t1b"

MyFunctionGrouph ame. def

MyFunctionGrouph ame.idl #include "Iad=sFunction. h"
MyFunctionGrouph ame. rc
i cpp /////////(///
¥ s CFunctionMames
=I-43 Header Files class ATL_HO_VTABLE CFunctionName :

public CComObjectRootEx<CComSingleThreadModels.

Resource. h public CComCoClass<CFunctionName, &CLSID FunctionNane:.

StdAfx.h B public IDispatchImpl<IFunctionName, &IID IFunctionName, &LIBID MYFUNCTIONGE

public ITadsFunction
<

3 b4
B8 Classiew ‘ e HesourceVi...‘ £] FileWiew I—

public:
4

18) We’re almost done now. At this point we can concentrate on the code. In the “[Function
Name].h” file, scroll down to almost the end of the source code. Locate the wizard generated
code below and Remove this entire function as we are about to inject some example code.

STDMETHOD(Compute)(VARIANT * dataln, VARIANT * dataOut)

{
if (dataOut == NULL)
return E_POINTER;
return E NOTIMPL,;
H

. MyFunctionGroupName - Microsoft Visual C++ - [C:\...\FunctionName.h *]

1 File Edit View Insert Project Build Tools Window Help

I% =3 uﬂ * i) E%‘z EﬂtlmValianllnpulAlgumenls ﬂ # @ B LIRE <y

public:
CFunct ionHame()

“Workspace "MyFunctionGroupName” 1 proje

= MyFunctionGroupM ame files ¥
—-423 Source Files

FunctionMame. cpp

adsFunction. id DECLARE_PROTECT_FINAL CONSTRUCT()
tyFunctionGrouptame.cpp
MyFunctionGroupMame. def BEGIN_COM_MAP(CFunctionName)

COM_INTERFACE ENTRY(IFunctionNanes)
MyFunctienrouphlame. idl CON_INTERFACE ENTRY{IDispatch)
MyFunctionGroupName.rc COM_INTERFACE_ENTRY(IladsFunction)
Stdbfx.cpp END_COM_HAF ()

DECLARE REGISTRY RESOURCEID(IDRE_FUNCTIONHAME)

423 Header Files)
; 7 TFunctionfiane
Resourceh < TladsFunction
Stdafxh STOHETHOD { Compu ANT * dataln, VARIANT * dataCut)

+-[Z7] Resource Files
+ (7 External Dependencies

#endif -~ FUHCTIONHAME H

19) In the place of the code you just removed, insert the following example code.

STDMETHOD(FinalConstruct)(void)

return S_OK;
}

STDMETHOD(FinalRelease)(void)

return S_OK;
}

STDMETHOD(Compute)(/*[in]*/ VARIANT* dataln, /*[out]*/ VARIANT* dataOut)
{

int argCount = dataln->parray->rgsabound->cElements;
if (argCount I=3)

return DISP_ E_ BADPARAMCOUNT;
}

// Now, get the input arguments array
VARIANT* argsArray = (VARIANT*)(dataln->parray->pvData); // Could use SafeArrayAccessData, but slow..

// Second Step: Check Types of each arg..... Either VT RS (floating point value), VT _BSTR (string value) for now...

if (argsArray[0].vt I= VT_R8) return E_ INVALIDARG;
if (argsArray[1].vt I= VT _R8) return E INVALIDARG;
if (argsArray[2].vt I= VT_R8) return E_ INVALIDARG;

// Third step: Get the actual values of each arg by extracting from the array of input arguments
register double pl = argsArray[0].dblVal;
register double p2 = argsArray[1].dblVal;
register double p3 = argsArray[2].dblVal;

// Final step: Perform your function's purpose and return the output value

// Add em up and ship it out... Because we're returning a number, the return type is VT_R8 (double) for now
// Tads will convert if necessary..

dataOut->vt = VT_RS;

dataOut->dblVal = pl + p2 + p3;

return S_OK;

10

When that step is complete, your code should like something this:

*« MyFunctionGroupName - Microsoft Visual C++ - [C:\...\FunctionName.h *]

[Fle Edit View Insert Project Buld Tools Window Help

2 EdD a9- 0 [B | G [oerentmputtiguments +] | | @ 38 5 1 2L

e 77 IFunctionNane
= public:
Workspace MyFunclionGrauptlame. 1 proje 7 TladsFunction
=1 (8 MyFunctionGroupN ame filss STDMETHOD (FinalConstruct)(void }

-1 23 Source Fil
= o return 5_OK;

yFunctionGiouphame, cop STDMETHOD(FinalRelease) (void)
yFunctionGroup ams. def
yFunctionGiauphame il return 5 0K
iyFunctionGiroupN ame.ic

STDHETHOD(Compute) { /#[in]%s VARIANT# dataln, ~*[out]*/ VARIANT= dataOut)

Bl Furstordtame 1 int srgCount = dataln-)parray->rgsabound—>cElements:
(5] Resaurceh if (argCount != 3)
Stdhfeh return DISP_E_BADPARAMCOUNT:

+ (1 Resourcs Files)

+1 (22 Extemal Dependencies
~7 How, get the input arguments arra:
VARIANT* argsirray = (VARIANTx)(dataln—sparray—>pvData); .~ Could uss SafshrravhoosssData, but slow

~< Second Step: Check Typss of sach arg Either VTR (floating point valus). ¥T_BSTR (string va
if { argshrray[0].wt |- VT_R&) return E_INVALIDARG:
if { argehrray[l].wt |- VI_R&) return E_INVALIDARG.
if { avgshrray[2].wt |- VT_RE) return E_INVALIDARG:

Third step: Gst the actusl valuss of sach arg by sstracting from the array of input arguuents
register double pl = argshrray[0].dblVal:
register double pZ - argshrray[1].dblVal:
register double p3 - argshrray[2].dblVal.

/7 Final step: Perform your function's purposs and rsturn the output valus

<< Add em up and ship it out... Becauss we'Te returning a number, ths return type is ¥T_RS (double)
datalut—swt = VT
1

_RB.
datalut-»>dblVal = pl + p2 + p3:

return S_O0K;

i

< >

#endif </ FUNCTIONNAME H_
8 Clasbiow | {5 ResourceVi..| (=] Fiiew ’

20) Because of a Visual C++ 6.0 bug, you’ll need to remove the “ladsFunction.idl” file from
your project or you will receive an error if you attempt to add another ATL object (function).
Simply click on the IadsFunction.idl file in the File Workspace view and hit the Del (delete)

*«. MyFunctionGroupName - Microsoft Visual C++ - [

[File Edit Wiew Insert Project Buid Tools Window Help

SN~ = R = = o |

alx < IFunctim

public:
Wwiorkspace MyFunctionGroupt ame” 1 proje ¢ ITladsFurn
= MyFunctionGroupMame hles STDHETHOD
-3 Source Files 1

9
FunctionM ame. cpp return !

MuFunctionGroupMame. cpp STDHETHCD
MyFunctionGrouph ame. def i .
MuFunctionGroupMame.idl return |

I pFunctions roupk ame. re
Stdafx cpp STOMETHCD
=23 Header Files i
FunctionM ame. b int argt
Resource.h Ef b ax
Stddfx h retur:

+--[_7] Resource Files

+ External Dependencies
= " < How,

VARTANT:

< >
e Seco

B3 Clagsiiew ‘ i HesourceVi...J |E] Fileiew r a

11

21) Build the project again (as shown in step 11). By building your project, the new dll should
be registered so you’re ready to run and debug it now. If you want to use your function on
another PC, you’ll need to register the dll. Please consult the web for documentation on
“regsvr32.exe” and how to perform this procedure.

At this point, you can begin modifying the code in the function to perform your specific
computation. For more background on how to pass arguments, check their types, and return
values, please refer to the SampleFunction project included with this tutorial. Make sure to
read the comments in the supplied Compute functions.

If you have any further questions, you can search the lads Google Group or post a question:

http://groups.google.com/group/iads

3. How to Access Your New Function in IADS

1) Run Iads and login to a test desktop

2) Press the “Configuration” button on the IADS Dashboard in the lower right hand corner of
the screen.

ParameterTool | Display Builder || ChangeDesktop Performance

Global Time Message Log Sawe Config Loeg OFF

lads Legs Configuration | HideDashboard Help

3) After pressing the button, the Configuration Tool dialog will appear. In the left window pane,
click the “Data” folder and then finally the “ParameterDefaults” table. This is the location in
Iads where you will build a new derived parameter to test your function.

" ConfigurationTool: Editing table ParameterDefaults

File Edit View Tools Window Help

|dd|s iR/l [TYISY |[HxTFE=

+-_ | Automation £ Para... | Parameter | ParamType | ParamGroup | ParamSubGrau
=] Data 184 |Import TestAscii2 ascii Rotor Test
Q DataGroups 185 |Import TestAscii3 ascii Rator Test
;ﬂqEn\ml“ 186 |Import TestAscii4 ascii Rotar Test
g-ﬂne i it 187 |Import | TestAsciid ascii Raotor Test
=) ParameterDefaultsState — e
= 3 188 |Import TestAperiodic float Rotor Test
%) ParametersSavedinDisplays —— A
4| Display 189 |Import TestSine float Rotor Test
+-__| Logs
4| Test
+- o Groups
1. 68l Suctom v || <] == ParameterDefaults 4 MissionAttributes » PlannedTestPointsExGroup | 4| |

4) Ok, let’s add a new derived parameter. For speed, we’ll simply copy the last line in the table
and then replace our new values as needed. Select the last row in the table by pressing the
row button (in the picture, button #189). After the row is selected, press <ctrl+C> to copy

12

and then follow that by a <ctrl+V> to paste. You should now see a copy of the last line
placed into a new row. When you’re done, the table should look something like this:

¥t ConfigurationTool: Editing table ParameterDefaults

File Edit View Tools Window Help

|ddad|s |t 2= 0] TSV |

+- | Automnation = Para... | Parameter | ParamType | B
=] Data 183 |Import TestAscii2 ascii Rr
Q DataGroups 184 |Import TestAscii3 ascii Re
Q Envelopes 185 [Import | TestAscii4 ascii R
fd”: ParameterDefauits 186 |Import TestAsciid ascii R
#=| ParameterDefaultsState N
H ParametersSavedinDisplays 187 |Import TestAperiodic float R
+- | Display 188 |Import TestSine float R
+-_ | Logs 189 |Import Copy(1)_Of_TestSine float R
+- | Test
+-af, GIOUPS
=S & Quctom 1< =] =]=I", ParameterDefaults A MissionAttributes A Pl

Click into the first column of the new row. As we go along, to proceed to the next cell simply
press the “Tab” key.

Leave the first column alone and simply press the Tab key to start editing the second column.
In the second column, type the name of your test parameter. Let’s call it “TestMyFunction”.
Once you are done, press the Tab key as always. Now let’s set the type of the parameter. Just
leave it “float” (i.e. 4 byte floating point number). In the future, if you’re testing an Ascii
return value, you’ll need to set this to Ascii.

At this point, keep pressing the Tab key until your arrive at the “DataSourceType” column.
Make sure that is set to “Derived”.

In the next column (DataSourceArgument) you’ll write your derived equation. Now,
remember from the discussion while creating your function regarding the function name.
Enter the function name followed by the arguments:

MyFunctionGroupName.FunctionName(5.0, 10.0, 30.0)

If you want some variety to your test data, you can use something like this:
MyFunctionGroupName.FunctionName(Rand()*5.0, Rand()*10.0, Rand()*30.0)

Or if you already have specific input parameters in mind, you can do something like this:

MyFunctionGroupName.FunctionName(Paraml, Param2, Param3)

In the next field (UpdateRate), type the sample rate that you desire to update your function. If
your equation is based off of other parameters, the sample rate will be automatically
computed and placed into this field when you Tab out of the cell.

13

Just for safe measure, press the Tab key until you get to the “FilterActive” column. Make
sure that it is set to “No”. We don’t want a filter to be affecting our output at this time, or it
could lead to confusion.

After these steps are complete, press the “Save” toolbar icon in the Configuration Tool.

*b; ConfigurationTool: Editing table ParameterDefaults
File Edit View Tools Window Help

”‘g@“‘”%%%|ﬂg|ﬂﬂ|ﬁ

+-__| Automation s Para...
--_ | Data 183 | Import
=] DataGroups | 184 |Import
g Envelopes | 185 | Import
Q ParameterDefaults 186 Import
#=| ParameterDefaultsState Prel
g ParametersSavedinDisplays | 187) Import
+-__ | Display 188] import
-1 Logs | 189 | Import
+-__| Test e
+-af Groups
<. wl Svetem _ |<| < >|>|| Pa

6) After you’ve clicked the Save button, your new parameter will appear in the Parameter Tool.

7)

To run the function, simply drop the parameter into any display. If you’re not familiar with
building a test display and attaching a parameter, continue on the tutorial.

To build a test display, simply create an empty Analysis Window by dragging the icon from
your Display Builder tool and on to your Microsoft Windows desktop and dropping it. After
you’ve dropped the Analysis Window, you have a choice to name the window.

*it; Display Builder Eﬂﬁlﬁ__d
[ﬁa Displaysl ActiveX Contmlsl Alignment]

S :
T = Pane! Folder

ABLI0E

[mmuon | |-

14

8) Now simply repeat the process, but drop the “AlphaNumeric” display into the Analysis

9)

Window (be sure drop the new display into the Analysis Window you’ve just created and not
on to the Microsoft desktop). After the drop is complete, you should see the new display in
the Analysis Window. The AlphaNumeric is a very simple text display that will be easy to
view our equation output results.

“ib; Display Builder
Data Displaysl ActiveX Cunlmls} Alignmenﬂ

R E
= Pane! Folder

LT ey
| m—m
1oy

| &

Ok, now for the parameter attachment to the display. Click on the “Parameter Tool” button in
the lads Dashboard (bottom right hand corner of screen). The Parameter Tool dialog will
appear. The Parameter Tool dialog contains a list of all your available parameters in the
configuration. Now all we need to do is find our parameter.

ParameterTool | Display Builder || ChangeDesktop Performance
Global Time Message Log Sawve Config Log Off
lads Logs Cenfiguration HideDashboard Help

10) In the top text field (quick find box), start typing the parameter name. I used the name

“TestMyParameter”, so if you’ve done the same then simply type “TestMy”. You’ll notice
that the window at the bottom opens as soon as it finds your parameter. Keep typing until you
see the full parameter appears. Once it’s visible, click on the parameter name and “drag” the
parameter into the display on the Analysis Window. As soon as you drop the parameter, data
should appear. This is the actual output of your function! See that wasn’t too bad ;)

CEX

Tib; ParameterTool
TestMy

Group
RawkK.amData
Rotor
—
Test

Parameter Shor «
TestMakeBlobC

TestMultiBlob

TesthMyFunction

TestNGC |
TestOAlap1

TestPointTrigger

TestPolyM

-
4| | 3

15

11) After your initial checkout is complete, you can move on to displays such as the Strip Chart
that will show history and allow you to examine the data point by point for discrepancies.
Simply repeat the process above at step 8, but in this instance use the icon just under the
Analysis Window icon (first column second row). Make sure to save the configuration for
later.

12) If you want to debug the function using the Visual C++ 6.0 debugger, continue to the next
section.

4. How to Debug Your New Function in IADS

1) Bring up your project, and place a break point in your “Compute” method for testing.

"+ MyFunctionGroupName - Microsoft Visual C++ - [C:\._.\FunctionName.h]

5] File Edit ¥iew Insert Project Build Tools Window Help

8 = @ & | G mVariantinputArguments | el B 1 EL
alx < TFuncticnName
public:
workspace MyFunctionGroupMame” 1 proje ## IladsFunction
= MyFunctionGroupM ame files STDMETHOD{FinalConstruct){ woid)
=24 Source Files t .
FunctionM ame. cpp peturneS 0k
ladsFunction.idl
MyFunctionGrouph ame cpp STOMETHOD({FinalFelea=ze)({ woid)

MyFunctionGrouph ame. def
4 e return S_0K;

MyFunctionGroupM ame. idl
MyFunctionGrouph ame.rc

Std4fx.cpp STDMETHOD(Compute){ s*[in]%- VARIANT* dataln, ~*[out]*
=423 Header Files i X
Function ame.h L] int argCount = dataln-»parray-:rgzabound—:cElements:
Resource h if { argCount l= 3 3
Stddfeh return DISP_E BADPARAMCOUNT;
+-(_] Resource Files T

+ External Dependencies
& P < How, get the input arguments array

VARIANT* argshrray = (VARIANT*)(dataln-:parrav->pvDate

/7 Second Step: Check Types of each arg... .. Either VI
if { argsdArray[0].vt != VT _E8) return E_TIHVALIDARG;
if { argsArray[l].vt != VT _EB8) return E_THVALIDARG:
< > if (argsirray[2].vt != VI_R8) return E_INVALIDARG;

B8 ClassWiew I = F!esource\u"i...] |E] FileWiew r]

2) Go to “Project->Settings” drop down menu in Visual C++ 6.0, and in the dialog that appears
pick “lads.exe” as your “Executable for debug session”. The lads.exe file is in your
“C:\Program Files\lads\ClientWorkstation” directory. Add “/local” to your “Program
arguments”.

Project Settings

Settings For: |W'in32Debug j General Debug | CiC++ | Link | Resourc EE

Category: 'm

Executable for debug session:
|C: “Program Files\AD S\Clientw ark station') ads. exe J

Working directaony

Program arguments:

|.f|oca|

Remote executable path and file name:

Cancel

16

3) Build your project again for good measure and click on the “Go” command (or the F5 key).
Iads will start.

4) In the Configuration Tool, create a derived parameter in the ParameterDefaults table. If you
need more background info on how to do this, consult the last section. If you’ve already
created a derived parameter referencing your function, simply click on your equation in the
ParameterDefaults table.

Notice that when you “tab out” or finish the equation in the ParameterDefaults table, your
function will be called. At this point you can debug all of the argument types and make sure
you’re getting the correct items. If you have an argument error and return an error code from
your function, notice that you’ll get an error message inside of Iads and the equation text will
turn red in color. Once you’ve checked out the arguments, you can remove the breakpoint
and debug the function with live data.

5) Add a display to the new Analysis Window (i.e. AlphaNumeric or Strip Chart) as described
in the last section. If your parameter isn’t already attached to a display, simply drag and drop
your newly built derived parameter into the display. Your break point should now hit in the
debugger. You can now step through your computational code if necessary.

Again, for more background on how to pass arguments, check their types, and return values,
please refer to the SampleFunction project included with this tutorial. Be sure to read the
comments in the supplied Compute functions.

If you have any further questions, you can search the Iads Google Group or post a question:

http://groups.google.com/group/iads

5. Advanced Topics
5.1. Initialization and Execution of your Custom Function

In this section, we will review the steps taken during initialization and execution of your
custom function. It is important to be aware how lads creates your function, as well as how it
calls your function during both the “initialization stage” and the “computation stage”. This will
affect how your Compute function is designed. For reference, you can refer to the
SampleFunction2.h file in the SampleFunctionVC project listed above.

First, let’s examine the initialization stage of your function in general. Each and every
time a derived parameter is created that references your custom function, an instance of your
custom function object is created within the parameter’s computational engine. When the
parameter requires data, this object is then used to produce results as described by your specific
custom code. As a general rule, your custom function object is created each time a user drops a
derived parameter referencing your function into a display, enables and IAP parameter
referencing your function, or edits an equation in the ParameterDefaults table referencing your
function.

17

Yt ConfigurationTool: Editing table ParameterDefaults
File Edit View Tools Window Help

[Pd &l sBR|2e| 0] PElTE|T BB | % N 3
+-_ | Automation 5 DataSourceType | DataSourceArguement UpdateRate | LLNegative |
=] Eata 228 | Derived SampleFunctionVC_SimpleFunction2("Text", 1.2) 100.0

Q DataGroups | 229 | Derived SampleFunctionVC_SimpleFunction2("Text", C, D) 2604.1666...

Q Envelopes 230

&) ParameterDefaults ||~

Extending this logic, each “instance” of your function called from within lads is a
completely independent unit of code, akin to a C++ object with member variables and
corresponding code. In essence, each derived parameter is running a fully independent object.
Obviously, this is necessary if your function maintains states such as “last value” or perhaps a
specific “matrix” input file that is required and chosen by the user via the function’s input
arguments. In reality, your function can be called from many different derived parameters
simultaneously, each with their own unique set of input arguments, and possibly computing at
different times within the data. Because of this wide variety of possibilities, be aware that any
reference to “static” or “global” variables should be considered carefully. Global variables will
allow you to “share” information between multiple instances of your function, but you’ll have to
be very careful about the timing considerations. If you do decide to venture down this path,
please do post your scenario to the Iads Google Group. In general avoid all use of global
variables and instead, use member variables within the class to hold any necessary state
information.

Now let’s examine the initialization stage in more detail. The function name (i.e. ProgID)
within the derived equation is used to call the “CoCreatelnstance” function in the Microsoft
COM libraries to create your object. Once your object is created within lads, the
“FinalConstruct” method is called. In this method, you can put any initialization needed that is
independent of the input values to your function. This most likely would be limited to things
such as setting member variables to a known initial value.

STDMETHOD{FinalConstruct) { woid
{
<7 The ATL "goo" will call thi=s upon construction of your cla=s. It be called once per class creation.
<7 Ewery derived parameter that get's called and uses this function vwill create it's own "instance" of this
<7 clas=, =o if you have 10 derived parameters calling the function. this function will be called 10 time=. but
~+ sach call will be a complete unigue copy of this class.
<+ If you want to create any "global" resources, that are shared between all the class instances, make sure you
<7 create a global static wariable (i.=. above this class definition see "ezamnple shared wvariable"). Anvthing that vou
<+ want kept separate per instance and not shared, declare in the mnenber variable selection below (see CComBESTE mStrin
#+ Thi= wariable is for performance and initialization reasons as you will see below in the Compute function.
<7 Malke =ure to add thi= member variasble to your class —» bool nWaslnitialized
nWasInitialized = falses:;
<+ Preparation for an example on how to output a "blob" data
For now, we just set our Safelrray pointer to HULL. We'll do the allocation in the Compute function init section
nS4 = HULL:

return 5 0K:

For instance, say you were building a function allowed a user to specify a number of data
points to “buffer” before computing a results. Of course you’ll need a member variable in the
class to hold this buffer. During the FinalConstruct, you would set your member variable buffer
pointer to NULL, but you would not allocate the memory. At this point in the initialization, you
don’t have any of the argument values from the user’s equation, thus you don’t know how large
to allocate the buffer. In the next paragraph, we will discuss a way to solve this issue.

18

After your FinalConstruct function is called, Iads then calls the “Compute” function
within your object. The main purpose of this first call to your Compute function is to validate the
equation input variables. Understand that the custom function interface is flexible enough to
allow any number of input arguments, and each argument could be a different type (float, ascii,
blob, etc). It is at this exact time, the very first call to your Compute function, which you will
need to check the number and types of your input arguments. In fact, lads will only listen to your
input argument error return codes on the first call to your function. Since we only want this code
to execute on the first call to the Compute function (and never again), a Boolean member
variable can be used to solve the problem. Simply add a member variable to your class and
initialize it to false in the FinalConstruct.

STDHETHOD(FinalConstruct){ woid)

A4 Thi= wariable i= for performance and initialization reasons as vou will =ee below in the Compute function.
#< Make sure to add this member wariable to your class —: bool mWasInitialized
nWasInitialized = false:

The secondary purpose of this first Compute function call is to give you an opportunity to
initialize any further variables (such as buffers, etc). Now, inside the Compute function you can
check the Boolean member variable’s value, perform your argument checks and buffer
initialization, then set the member variable so the code is not triggered again. See the example
code snippet below or refer to the SimpleFunction2.

STDMETHOD{ Compute){ ~*[in]#*” VARIANT* dataln. -#*[out]*” VARIANT* dataCut)
{

¢ et the input argument=s array
register VARIANT® argsidrray = (VARIANT=*)(dataln—parray—:pvData): - Could use SafeirrayiccessData, but slower. .

<« The wery first call to this function is designated as an "initializion call”.
<« Check all parameter tvpes here and then never do again. Adding this check to your code will speed up the performance
if { ImWasInitialized }
{
¢ First Step: We need to check how many arguments were passed into our function from the user
<+ Emample, if the user creates a derived paramnster with the function —» SampleFunction. SimpleFunctionZ{ "Format"., Vali
s The argument count would be 3
int argCount = dataln-:parray-rrgsabound-:cElements;
if { argfount != 3)} return DISP E_BADPARAMCOUNT:

¢ Second Step: Check Types of each arg Either VT_FE8 (floating point walue). ¥I_BSTE (=string walue) for now

s In TADS, most every type of numnerical argument is passed via an B byte floating point walue VT_RS.

s If you're in doubt, use VI_EB. You can also brealk here in the code and examine the argsidrray[H].vwt walues to see the
Exanple, i1f the user creates a deriwved paranster with the function —» SampleFunction. SimpleFunctionZ("Format'. Vali
#« The argument type for argl would be VT_BSTE. .. and argi-srgd would be VT_RA

if { argsArray[0].vt != V¥T_BSTE)} return E_INVALIDARG:

if { argszdrray[l].wt |= WT_EB) return E_THVALIDARG:

if { argsArrav[2].vt |= VT_E8) return E THVALIDARG:

<+ The benefit of initializing here i= that you can return an error code back to the user in the event of failure

#+ Here's a list of pozsible return walues at this point:

< A) E_FAIL or E_UHEXFECTED —: Eeturns an "unspecified error" to the user

<+ B) E_OUTOFMEHORY —> Returns an "out of memory error' to the user

A C) E_THVALIDARG or DISP_E_TYPEMISHATCH —3 If one or more of the function argument= were of incorrect type (i 2. nur
s DY DISP_E_BADPARAMCOUHT —: If the number of function arguments were incorrect. returns an "invalid number of parame

#+ Do whatewver kind of alternatiwve initialization you nesd to here as well.
#» Exanples: Connecting to a TCP socket., Serial Port. or any other type of external device

i Connecting to an external database or any external file
o Preparing conputational lockup tables or anything else to prepare for calculation
o Allocating memory buffers for this function

regizter int lengthOfBufferirg = {int)argsdrray[l].dblVal:
mniyBuffer = nev float[lengthOfBufferdrg]:

mnWazlnitialized = true;

Now that the initialization stage of your function is complete, Iads will call your function
as data is required. This we will refer to as the “computation stage”. For each data value needed,
Iads will call your Compute function with all the necessary input data. Your custom function will
perform the processing and return a single value (the answer). This single answer will then be
returned to the derived parameter, buffered to limit redundant computation, and be provided to a
display (or other consumer).

19

The sample code in SampleFunction2.h will show you how to handle the various types of
input data (float, string, etc). It will also show you how to return these different types as your
custom function result. This will allow you to create custom functions to return data for almost
any situation. Again, if you need more help on this subject don’t hesitate to post a question to the
Iads Google group. For more advanced topics, such as returning multiple values from your
custom function, please continue to the next section.

5.2. Returning Multiple Results from your Custom Function

One of the apparent limitations regarding the custom function technique described above
is that it seems unable to return multiple values. As we have learned in the previous section, each
input argument that is supplied in the derived equation is sent into the Compute function, the
custom code uses these input values to calculate the result, and then the single result is returned
to Iads. Suppose you had a function with 5 input arguments, but instead of only outputting a
single result, it outputs 5 results. This problem can be solved in a simple fairly manner.

s ConfigurationTool: Editing table ParameterDefaults
File Edit View Tools Window Help

@ E @ & B B2 @|sz] e TG 2|82 | G [Notritered -]
+- | Automation A ParameterDefaults |F'arameter |F'aramType ‘ParamGroup |F’aramSubGr0up |SthName |LDngName ‘Units Color
| Data 228 |PD1 WyMultipleOutParam blob Group SubGroup
=) DataGroups [229|
=] Envelopes = |
[S}ParameterDetautts B | pempy

When a function needs to output multiple answers in a single computation, we can simply
output an “array” of answers. This array type output is referred to in lads as a BLOB (binary
large object). Once the array/blob is output from your custom function, it can then be returned as
a blob type parameter and the individual values in the array can be extracted using another
derived function called “Decom”. In summary, we simply return an array of answers (however
many required by the individual function), and then we can extract each value in its own unique
derived parameter using the Decom function. Now, let’s go more into detail about this technique.

First of all, we’ll need to create an array to output our 5 results. [ads requires that this
data array be allocated using Microsoft’s “SafeArray” mechanism, so we need to add a pointer of
type SAFEARRAY to our class. In this case, [used “mSA” as the member variable name.

B R

< HMember wariables of thi=s custom function
CConBSTE mStringlutput

CComnBSTE nErrorString:

SAFEARRAY* mSa;

SAFEARRAY#* mSADouble:

bool mWa=zInitialized:

T
#endif -~ SIMPLEFUHCTIONZ H_

Now we’ll need to allocate the memory for this array. Carrying on the initialization discussion
from the last section, we’ll perform the allocation in the Compute function within the “first time

20

only” portion of the function. To create the array, we’ll simply call the SafeArrayCreateVector
function with the type VT _UII (byte) and the number of bytes required.

if { ImWasInitialized)

s First Step: We need to check how many arguments were passed into our function from the user

<+ Emample, if the user creates a derived parameter with the function -»> SampleFunction. SinpleFunction2{ "Format"., Va
< The argument count would be 3

S5+

<+ At this point in time, all BElobs are "fixed size". so yvou'll need to determine a constant size in bytes and not che
#+ In thiz ezample, we will create a =ingle blob output array that will hold 2 float values.

The first 4 byte entity iz an un=igned integer which will hold the size of the blab {in bytes)

< The remaining bytes will hold our 2 floating point numbers

#+ The length in bytes would be —: =izeof(unsigned _ int32) + 2 *® =zizecf(float)

con=st int cHunFloatsInBlob = 2

con=t int cBlobsSizelnBytes = =sizeof{ unsigned _ int32)-#*HeaderSizelnBytes*s + cHumFloat=InEBElob * sizecf({ float) %

s How, let's allocate the Safedrray to contain our blobh data
nSh = ::SafedrravCreateVector({ VT_UIl, 0, cBlobsSizelInBytes):
if (mSA == NULL)
{
<7 Examnple of returning a custom error string to Iads. See GetDescription below for further info

nErrorString = "SimpleFunction? failed to allocate memory for Blob output”)
return E_OUTOFMEHORY :

Now let’s focus in on the actual “size in bytes” required by the allocation. To do this properly,
we have to describe in more detail the actual structure of the blob. In a blob, the first 4 bytes of
the array is a number specifying the total length of the blob (in bytes).

TotalSizeOfBlobinBytes IEI‘_-,ftesz 1-4
DataPortion Bytes: 65 -1

With this fact in mind, the equation to compute the total length of allocation needed is:
BlobSizeInBytes = sizeof(unsigned __int32) + TotalSizeOfDataPortionInBytes
Or
BlobSizeInBytes = 4 + TotalSizeOfDataPortionInBytes
Or in our example using 5 floating point numbers (4 bytes per number)
BlobSizeInBytes = sizeof(unsigned __int32) + sizeof(float) * 5

At this point, you should have the return blob/array allocated, so now let’s examine how to
update our values in the array and return the results. First, we’ll need to access the array pointer
within the SAFEARRAY. To do this, we simply call the SafeArrayAccessData function.

< Get a pointer to the safehrray data that we allocated in the "initialization stage" above
BYTE* =a;
cBafedrravhcocessDatal mSA, (void*#)bisa)

Second, let’s set the blob size into the array. To do this, we simply cast the pointer returned from
the SafeArrayAccessData to a type unsigned int32* and then set the value to the total number
of bytes in the blob. The total number of bytes in our example is 24 (4 bytes for the size field +
20 bytes for the 5 float values).

21

s How access the first 4 byte integer =o we can inject the Blob =ize (in byte=).
un=zigned _ int3Z* blobSizelnBytes = (unsigned _ int3Z#*)=a;

<+ Set the blob size in bytes
*blobSizelnBytes = cBlobsSizelnbBytes:

Now we can inject our computed results into the array. To do this, we need a pointer to the type
of variable we are going to store. We also need to make sure that the pointer starts at the proper
location in the array (past the blobSizeInBytes fieldwe just set above).

<« How let's inject the data into the remaining part of the EBlob.
<« Get a pointer to the payload portion of the Blob (starting at 5th byte)
float#*® payvloadValuses = (float#*®)({=za + =izeof{unsigned _ int32)):

<« Set arg?Z and arg? into the blob payload {(arrav)

pavloadValue=s[0] = returnValuesl;
pavloadValue=s[1l] = returnValus?:
payvloadValue=s[2] = returnValue=l:
pavloadValue=[3] = returnValued;
pavloadValue=s[4] = returnValu=sh;

Instead of setting each value individually, you may want to simply call another function to
compute the results and pass in the output array pointer. You can then set the return values from
within that function and also keep all of your “calculation” code separate from the “interface”
code. This is a much cleaner approach overall.

s Likewi=e, 1f wou had vour own internal function to compute the results. vou could =imply pass in the input args
< and a reference to this array. Your function would =imply write the result directly into the array

< Hake sure you maintain a cons=istent order to your output=, because we'll have to extract them "one by one" later
CalculatedyResults(arg?. argld. pavloadValuss)

After we are complete, this is how the blob layout will appear in memory (zero based index):

24 Bytes: 0-3
ReturnValue1 Bytes: 4 -
ReturnValue2 Bytes: 8 - 11
ReturnValuel Bytes: 12 -15
ReturnValued Bytes: 16 - 19
ReturnValueh Bytes: 20 - 23

Once you have completed setting the return values into the array, it’s now time to return the blob
to lads. All we need to do here is call SafeArrayUnaccessData, set the dataOut->vt to

VT _ARRAY|VT UIl (i.e. an array of bytes), and assign the dataOut->parray variable to our
SafeArray member variable (mSA). To finish the function and return the value to lads, we
simply return S OK from the Compute function.

SafehrravlnaccessDatal mSA)
¢ Finally, ==t the blob output type and reference the =zafedrray we just built
datalut—swt = VT_ARRAY|VT_UI1:

datalut—:parray = mSa;
h

return S_0K;

22

At this point in time, we can now test the function. To proceed, we’ll need to build a
derived equation to call your new function. We will also need to build derived functions to
extract the results from the blob. Compile your project and clean up any errors. When that is
done run Iads, and open up the Configuration Tool. Open the ParameterDefaults table and add a
parameter that calls your new function.

s ConfigurationTool: Editing table ParameterDefaults

File Edit View Tools Window Help

EENCIEE N AR i = el = Y K
+- | Automation A ParameterDefaults | Parameter | ParamType ‘ ParamGroup | ParamSubGroup | Shorthame | LongMame ‘ Units | Calor
-] Data 228 |PD1 WyMultipleOutParam blob Group SubGroup

=) DataGroups [229|

=] Envelopes = |

B P arameterDefaults M| sl

Notice in the figure above that the “ParamType” column is set to “blob”. This is an essential step
that you can’t forget. If the ParamType is not set to “blob” for the derived parameter, you will
most likely get random return results or zero while attempting to extract the 5 embedded values.

Yt ConfigurationTool: Editing table ParameterDefaults

File Edit View Tools Window Help

ErIEE RN A s - R s =
+- | Automation e’ DataSourceType | DataSourceArguement UpdateRate | LLMegative
=] Eata 228 | Derived SampleFunctionVC_SimpleFunction2("Text", 1,2) 1.0

&) DataGroups 299

=] Envelopes [oan |

= 230

S} ParameterDefaults B

Now, scroll over to the DataSourceType column, and set it to “Derived”. In the
DataSourceArguement column, type an equation that calls your new function. To debug the
equation, you might want to start with a set of known input values (constants). After completing
the equation, save your configuration. We can now actually test the raw output of the custom
function.

At this time, if you wish to see the raw output of your function you can drop your newly
created derived parameter into the “ladsBusMessageDisplays.BlobViewer” display. If you right
click on the ActiveX tab of the Display Builder in Iads, you can add the Blob Viewer to your
available displays list. Once that is complete, drag and drop the Blob Viewer display into an
AnalysisWindow. After the display appears, drop your new derived parameter into the display.
Notice that the Blob Viewer only shows the “payload” portion of your blob. The size field in the
blob has been stripped by Iads. This is to be expected, so don’t be alarmed.

Each 4 bytes in the display is a single 32 bit float return value. Bytes 0 .. 3 show the first
return value, bytes 4..7 show the second, and so on. Note that since our blob has a total of 5
return values, there is an extra 4 byte field at the end containing all CD values. This is an artifact
of the display and not actually in the blob itself. This issue should be fixed in a new version of
Iads soon, so you can safely ignore it for now.

23

This window has NOT been classified

G &y 2r [s mer e Wil 8 551
:

b—i

o0 o0 80 3F o0 00 00 40 =
o0 00 40 40 00 00 00 40 —

oo 0o 0a aF Ch Ch Ch CD

-

This window has NOT been classified

Now that we know our blob is alive (no pun intended), we can continue on and actually
extract each individual value. When this step is complete, we can drop each individual return
value into its own display, or use these return values as an input into another derived equation.
After extraction, it will simply be “yet another derived parameter” and you can treat it like any
other parameter in the system.

Y ConfigurationTool: Editing table ParameterDefaults

File Edit View Tools Window Help
|@E | ®| LR 2| TEl 2 |87 R | % [NtFitered -]
+-_ | Automnation 2 ParameterDefaults |F'arameter |ParamType |ParamGr0up |ParamSubGr0up |Sh0rtName LongMame | Units
=-__| Data 228 | PD1 MyMultipleOutP .. blob Group SubGroup
Q DataGroups | 229 |PD1 ReturnValue1 float Group SubGroup
Q Ervelapes | 230|PD1 ReturmnValue2 float Group SubGroup
5 E PD1 ReturnValue3 float Group SubGroup
) ParametersSavedir | 232|PD1 ReturnValued float Group SubGroup
+ | Display || 233|PD1 ReturnValues float Group SubGroup
+-__| Logs | 234
+-_| Test v
< | > |« <] =[=I[" BlobDefinitions A ParameterDefaults A Envelopes » DataGroups } UserValidationLog [« [

To extract the individual values from the blob, we need to create one derived equation per
value. Each derived equation will use the “Decom” function to do the extraction work. Now,
return to the Configuration Tool and ParameterDefaults table to add 5 more derived parameters.
For each derived parameter, you must set the “ParamType” column to the type of the extracted
value. In our case, we packed 5 floating point values (32 bits each) into the blob, so the
ParamType must be set to “float”. If you skip this step you will again most likely get random
values or zero.

At this point we’re almost done. All we need to do is to write the extraction equations
using our blob parameter as the input. Scroll over to the DataSource column and set it to
“Derived”. In the DataSourceArguement column, add the following equation:

Decom(MyMultipleOutParam, 0, 4, 0, 31, 1, TRUE, FALSE)

24

The equation looks a little cryptic so, let’s go over the Decom function arguments:

FuntionName: Decom

Arguments: 8

ArgumentList: InputDataParam, ByteOffset, NumBytes, StartBit, StopBit, DataTypeToReturn, Signed,
ReverseBytes

DataTypeToReturn -> { Integer=0, IEEEFloat=1, 1750Float=2, CharString=3, Array=4 }
Signed -> { False=0, True=1} or just use TRUE/FALSE
ReverseBytes -> { False=0, True=1}

Example Usage to extract a 4 byte IEEEFloat: Decom(MyIntParameter, 0, 4, 0, 31, 1, TRUE, FALSE)

Basically, the Decom function is an all purpose blob field extractor which can convert the
bit patterns extracted into any available type in lads. With this in mind, let’s focus back on
extracting our values.

Decom(MyMultipleOutParam, 0, 4, 0, 31, 1, TRUE, FALSE)

The first argument of the Decom function is the blob source parameter. In this case, we use the
derived parameter that produces packed answers from our custom function. This should be the
same parameter we dropped into the Blob Viewer above.

The second argument is the “starting byte offset” of the item we wish to extract within the blob.
The byte offset is simply the number of bytes from the start of the payload section of the blob
(remember to now ignore the 4 byte size field). Since we are defining the equation for the first
return value, the starting byte offset will be zero (all the offsets are zero based in this equation).

The third argument is the number of bytes to extract. In this case, the size of the return value is 4
(4 byte floating point number). If you had chosen to pack double precision floating point values
(8 bytes each), this argument would be set to 8.

The fourth argument is the “starting bit offset” of the data within bytes identified in arguments 2
and 3. In this case, we want all the bits so we simply specify bit 0. Likewise, the fifth argument is
the “ending bit offset” of the data identified in arguments 2 and 3. Again, we want the full 32
bits, so we’ll specify 31.

The sixth argument is the actual “data type” that we want to return from the function. In this case
it’s an IEEE float, so we’ll specify 1. The seventh and eighth arguments are simply the signed
flag and whether we need to reverse the bytes before data type conversion. We’ll specify TRUE
and FALSE respectively.

Now that we understand the Decom function in general, let’s simplify our task. Since all
of our return values are all of the exact same type and size, we can generalize our equations as
such:

Decom(MyMultipleOutParam, index*sizeof(returnValue), sizeof(returnValue), 0,
sizeof(returnValue)*8-1, DataType, TRUE, FALSE)

25

Or for our specific example
Decom(MyMultipleOutParam, index*4, 4, 0, 31, 1, TRUE, FALSE)

Where index goes from 0 to 4 (0 being our first item and 4 being our fifth item)

Using this generalization, we can easily write all of the functions needed:
ReturnValuel => Decom(MyMultipleOutParam, 0, 4, 0, 31, 1, TRUE, FALSE)
ReturnValue2 => Decom(MyMultipleOutParam, 4, 4, 0, 31, 1, TRUE, FALSE)
ReturnValue3 => Decom(MyMultipleOutParam, 8, 4, 0, 31, 1, TRUE, FALSE)
ReturnValue4 => Decom(MyMultipleOutParam, 12, 4, 0, 31, 1, TRUE, FALSE)

ReturnValue5 => Decom(MyMultipleOutParam, 16, 4, 0, 31, 1, TRUE, FALSE)

*i; ConfigurationTool: Editing table ParameterDefaults
Fle Edit View Tools Window Help

| (w4 R 28|87 T B | NotFitered |
-

+- | Automation DataSourceType | DataSourceArguement | UpdateRate | LLNegative | LLPositive
=-__|Data 228 | Derived SampleFunctionVC._SimpleFunction2("Text", 1,2) 1.0
Q DataGroups | 229 | Derived Decom{ MyMultipleQutParam. 0. 4. 0. 31. 1. TRUE. FALSE) 10
=) Envelopes | 230 | Derived Decom(MyMultipleOutParam, 4. 4. 0, 31, 1, TRUE, FALSE) 10
ﬂ | 231 | Derived Decom(MyMultipleQutParam, 8. 4. 0, 31. 1. TRUE, FALSE) 1.0
Lot .| BT | z g
%) ParametersSavedir | 232 Der?ved Decom(MyMuIt?p\eOutF'aram, 12, 4,0, 31, 1, TRUE, FALSE) 1.0
— || 233 | Derived Decom(MyMultipleOutParam, 16, 4. 0, 31, 1. TRUE. FALSE) 1.0

| Displav |z

When you are finished writing all of the extraction equations, your ParameterDefaults table
should look similar to the above figure. Make sure to save your configuration upon completion.

Now, all that is left is to drop the individual parameter into displays and test. If you have any
questions, please don’t hesitate to post them to the lads Google group.

26

