Creating an IADS
Custom Derived Function
Using C++ VS2005

March 2014
SYMVIONICS Document SSD-IADS-048
© 1996-2019 SYMVIONICS, Inc.

All rights reserved.

H
SYMVIONICS Inc.
Telemetry Systems

o a k~ w Db

Table of Contents

] 8 oo [N o! [0 o 1SR URRTRTRR 3
Creating your new function using the C++ New Project Wizardc........... 3
Accessing your new function iN LADS ... 14
Debugging your new function in TADS ..o 18
Deploying Your NEW fUNCEIONcoiiiiiiiiicicece e 20
AAVANCEA TOPICS ..uvieuiieiiiiteeiecee sttt se e te e e st e e s et e et e sraesteareesraereenee e 22
6.1. Initialization and Execution of your Custom FUNCHION..........ccccceeiieiiiiniiicien 22

6.2. Returning Multiple Results from your Custom FUNCLioNn...........c.ccccevevvveneenesiiennnn, 24

1. Introduction

This document assumes you are using Microsoft Visual Studio 2005. The tutorial has not
yet been attempted on a newer version, although it may still apply. This instruction guide will
cover:

1) Creating your new function using the VS2005 C++ New Project Wizard.
2) How to access your new functions in IADS.
3) How to debug your new function in IADS.

2. Creating your new function using the C++ New Project Wizard
1) Open up VS2005 and Select “File -> New->Project”.

@0 Start Page - Microsoft Visual Studio

ﬁ‘ Edit Wiew Tools Window Community Help

[new v [Praject... Chrl+Shift-+
Open P File... Chrl4M
Close Project From Existing Code...

2) Inthe New Project dialog that appears, choose the “Visual C++->ATL” tier and click the
“ATL Project” option. At this point, please read the next step before you finish completing
the dialog. There are some important considerations when choosing the proper project name.

New Project @ E\
Project bypes: Templates: EI El
= Wisual C++ ¥isual Studio installed templates
ATL
CLR [l ATL Project [ATL Server Project
General ‘s ATL Server Web Service

MFC
Smart Device My Templates
Win32
Other Languages
©Other Project Types

j Search Online Templates. ..

A project that uses the Active Template Library

MName: MyFunction

Location: CriMyFunctionDirectory -

Solution Mame: MyFunction Create directory For solution

[Jadd to Source Cortrol

3) The project name you choose will become part of the function identifier name (aka ProgID,
see inset). When it comes time to use your function in IADS, users will call your new
function in a derived equation based solely upon its ProjectName.ObjectName (we’ll add the
specific object name later). Plan on creating many functions in one “project” (most common
and easier to manage the code). One way to look at it is that the project name is akin to the
“Genus” of your function, so shoot for generality. Consider prefixing the project name with

your organization like “Nasa” or “Lockheed” and the type of functions you’ll be adding
(example: NasaFluidFuncs).

Now, in the fields at the bottom of the dialog, enter the project name, location, and the
solution name.

4) After pressing OK, the “ATL Project Wizard” dialog will appear as below.

ATL Project Wizard - MyFunction El@l

H Welcome to the ATL Project Wizard
[ATL]

Cwerview These are the current project settings:

Application Settings ® Drynamic-Link Library
* Nonattributed

Click. Finish From any window to accept the current settings.

After you create the project, see the project's readme txt: file For information about
the project Features and files that are generated.

[Mext » H Finish ” Cancel]

5) Click the Next button in the Wizard. On the new wizard page, ensure that the “Dynamic Link
Library (DLL)” is checked. Every function that runs in IADS is of type DLL because it
allows for maximum speed in computing calculations. Press the “Finish” button and the
Wizard will set up your project.

ATL Project Wizard - MyFunction

Toas Application Settings
e .gb -
S R
Overview [Attributed
Application Settings Server bype:
(&) Dynarnic-link lbrary (DLL)
() Executable (EXE}

() Bervice (EXE)
Additional options:
[allowss merging of proseyjstub code
[support MFC
[Suppart COM+ 1.0

6) Next, go to the “ClassView” tab in Visual Studio’s workspace and right-click on the project
name. Choose “Add->Class”.

@% MyFunction - Microsoft Visual Studio

File Edit Wiew Project Build Debug Data Tools Window Community Help

-6 H g 4 B9 - - B E | p Debug - winsz

% Build
Rebuild
Clean
Project Only »
Profile Guided Optimization 3

Project Dependencies. ..
Project Build Crder...

Custorn Build Rules. ..

@Solution Explarer Tool Build Srder ...

I -
Oukput | Add 4 | e Class.., |
Shaw output Fram: References... ‘g Resource... =

7) Upon adding a new class you will be presented with a dialog. Click the “ATL” tier and “ATL
Simple Object” as shown below. When that is complete, press the “Add” button.

Add Class - MyFunction

Cakegories: Templates:
=) Visual T+ Y¥isual Studio installed templates
LR
SYATL Simple Object SigATL Control
FC [} ATL OLEDE Consumer SEATL Dislog
O B ATL Server Web Service [EAdd ATL Suppart Ta MFC
... Smark Davica '@ATL Property Page [EE]ATL Performance Monitor Object
EATL OLEDE Provider @ATL Active Server Page Component

] ATL COM+ 1,0 Companent
My Templates

HJ' Search Online Templates...

Adds a simple Active Template Library object

[dame: | |

Location: | | Browse. .,

8) On the first tab, enter the name of your function in the “Short Name” field. The wizard will
fill out the rest of the tab automatically. For this example, I used “FunctionName” as the
short name. The name entered will be combined with your project name and will present the
final function name inside of lads (ProjectName.FunctionName) as explained on page 1. See
the “ProgID” field in your dialog for your final Iads function name. Update: Newer
VisualStudio versions do not automatically populate the ProgID field. Please ensure the
ProgID field contains your specific ProjectName.FunctionName text. If not, please type in
the appropriate text manually. Press “Finish” to continue.

ATL Simple Object Wizard - MyFunction @E|

Welcome to the ATL Simple Object Wizard

C++
Shart name: .hFile:

Mames

Options

FunctionMame FunctionMame.h E]
Class: .cpp file:

ZFunctiontanme Functionhame .cpp E]
[] attributed

oM
Coclass: Type:

Functionhlame Functionfame Class

Interface: ProgID:

IFunctionMame MyFunction. Functiontame

[Next =][Finish H Cancel]

9) At this point, the Wizard will automatically create the shell of your function code. All we
need to do now is to take care of the interface portion of the function. Basically, we’ll need to
implement the defined “IladsFunction” interface so that the function will be compatible with
the lads environment.

Download the ComFunctionHelper files on the Symvionics web site:
https://iads.symvionics.com/downloads/ladsComFunctionHelper.zip

After you’ve downloaded the zip file, unzip its contents into your project folder. While
unzipping, you’ll notice a file called “ladsFunction.idl”. That’s the file we’ll use to
implement the interface.

10) Now let’s add the IadsFunction.idl to the project. Click the Solution Explorer tab at the
bottom of the Workspace viewer.

= Properky ...

n_“_;|5|:||uti0n 'Z'gclass Wiz

https://iads.symvionics.com/downloads/IadsComFunctionHelper.zip

11) Expand you Solution, right click on the Project name, and select “Add->Existing Item...”

@9 MyFunction - Microsoft Visual Studio

B2 | &

Fil= Edit Wiew Project Build Debug Data Tools whitindow Community Help
- i - 5 @ % S Sl L b Debug - wing2
} sy = Cal d L3 48 S = - =
~FunctionMame.h*

| {Global Scope)

~ |

[Solution MyFunction’ (2 projects) b El class ATL_WC WTAELE CFunctionName :
ERNEz] My Function 8 —— public CComobjectRootEx<CComSing]l
= LD Generated — public CComCollass<CFunctionName,
o|h] MyFun =Sl public IDispatchImpl<IFunctionian
2G4 MyFun Clean
=~ L Header Filg .
] Functi Project Onky p pullic:
ﬂ R CFunctiontsmme ()
50U Profile Guided Optimization 3 :
|h] skdafsx
=~ L Resource f ¥
@ Functi Project Dn d q
L8 MyFun W8S BT AE EEE o DECLARE REGISTRY RESOURCEID (IDE_FUL
@ TyFun Project Build Crder. ..
& L5r Source Filg Cusktom Build Rules., ..
T+ Funicki BEGIN COM_ MAF (CFunctionlame)
4] MyFun Tool Build Crder. .. COM_INTERFACE_ENTRY (IFunct ionMName
= MyFunl add N | =] Mews Item EMNTRY (IDispatch)
L“.‘aSulutiUn Explorer |55 Referances. .. | 5] Exlsting Tkem.., L |
Output Add web Reference... [y Mew Filker
Showr output from: Set as StartUp Project «‘3 Class, .. L
Debug F | ¥z Resource...

12) In the File Name box, type “*.idl” and then the enter key to show the Interface Definition
Language files. Choose “TadsFunction.idl” and then press the Ok button to add the file into
your project. This should be the same ladsFunction.idl file that you unzipped in step 9.

Add Existing Item - MyFunction

Look in:

=
F
Deskbop

J

My Projects

My Computer

PIX

‘@ MyFURction V| & - A X [B = Took -
[E}1adsFunction.idl

=] MyFunction.idl

File name: |*.id\ v | I Add]
Files of type: |\l'isua\ C++ Files £*.c; *.cpp; *. oo *.og; *UHi; * kb *.h v| Cancel

13) Due to an apparent bug in Visual Studio 2005 (and beyond), we’ll have to manually correct
the output of the ladsFunction.idl file. Apparently, Visual Studio attempts to merge this
information into the output of your project’s idl file, but it does seem to work properly. Right
click on the ladsFunction.idl in your Solution Explorer and select “Properties”.

@2 MyFunction - Microsoft Visual Studio

File Edit Wiew Project Buld Debug Data Tools Window Community Help
[0 - i - BF = @l % G3 [F - =L b Debug - Win32
h o 3= 5 = YN)
Solution Explorer - Solution MyFunction' (2 pro... -« B X FunctionName; o
iz @ | [{lobal Scope)

J Solution "MyFunction' (2 projects) A~ Elclass ATL NO VTABLE CFu
= Z MyFunction public CComObjectRoot
= 5 Generated Files public CComCOClass<CF
a[t] MyFunction.h public IDispatchImpl<
o6+ MyFunction_i.c .
= | Header Files .
E . public:
ﬁ :uezgﬂsggahme.h = CFunctioniame ()
] stdafx.h ¢
= ¥ Resource Files ¥
FunctionMame. rgs r
% MyFunction.rc G DECLARE_REGISTRY_RESOUR
“é] MyFunction.rgs
= | Source Files
Cj FunctionMame.cpp BEGIN_COM MAP (CFunction
ﬂ COM_INTERFACE ENTERY (I
1::] MyFunction.cop j Open COM_INTERFACE_ENTRY(I
=] MyFunction.def Cpen With,.. END COM MAF ()
A MyFunction,idl -~
Gl sketafy enn [Z] View Code
DEJSqutmn Explorer Q'gc\ass i g Complle
S Exclude From Project
Show oukput from: Build a = =
L*Compiling manifest t &) ot
L=Linking. .. =5 Copy
1= Creating librar nd object Debugi\MyFunction.e
1>Eubedding ngnani fasts.r‘. K Remov ’ .
lrRagistering output. . Rename
1:Build log was sawved lonDiyect ory) MyFunct i on MyFun
LxMyFuncrion - 0 arr0r| iz Properties ‘

14) In the Property Pages dialog that appears, select the “All Configurations” drop down in the
upper left hand corner of the dialog. Open the MIDL->Qutput tier in the left window pane
and correct the “Header File”, “IDD File”, “Proxy File”, and “Type Library” fields using the
base name “ladsFunction”. When you are complete, the dialog should match the picture
below. After confirming the dialog contents, press OK.

ladsFunction.idl Property Pages E|Pz|
v

Configuration: | GleElylileNE Y= “ | Platform: |ActivelWin32Z)

= Configuration Propetties Cutput Direckary
General Header File IadsFunction.h
= MIDL DLL Data File
General 1ID File IadsFunction_i.c
Output Proxy File IadsFunction_p.c
Advanced

Yes
$({IntDir)/TadsFunction.tih

Generate Type Library

Command Line Type Library

Output Directory

Specifies directory ko place MIDL output inta, {fout [directory])

15) Now, build your Solution. After the build process is complete, a “typelib” file will be
created. We can use this typelib file to implement the ladsFunction interface. The typelib file
is simply a compiled binary version of the IDL file.

icrosoft Visual Studio

File Edit Wiew Project | Build | Debug Data Tools Window Community
iﬂ - - 2l a | Build Solution F7 | B Debug
s s= Rebuild Solution Chrl+al+F7 P i E

Salution Explarer - MyFunction &lean Solution nName.h

éj Build MyFunction be
[Solution "MyFunction’ (2 pr Rebuild MyFunction =5 ATL_NO V1
= A MEF"“':':'“") Clean MyFunction Aolic CComQk
= | Generated Files) hlic CComicc
@|h] MyFunction.h Project Only 4

abhlic IDisps
Q'—'ﬂ MyFunction_i.

Profile Guided Optimization 3
= | Header Files

; Lice:
K] Furctiontamme Eatch Buid. .. i _
ﬂ Resource.h i) unct iontlsme
! Configuration Managet...
i) skdaf.h
= [LF Resource File
T

16) Go back to the ClassView tab of the Workspace viewer. Right click on the “C[your function
name]” class object and then choose “Add->Implement Interface...”

@0 MyFunction - Microsoft Visual Studio

Fle Edit Wiew Project Build Debug Data Tools Window Community Help

ETRSEE RN =" - NG - 5L b Debug + Win3z

R A > d 3 48 B B -
[y | om = ‘(GIUbaIScope) 1
<Searchz - lJ c Elclass ATL_NO WTAELE CFunct

public CComChjectRooOTEx<
public CComCoClass<CFunc
public IDispatchImpl<IFu

= 33 MyFunction
‘i Global Functions and Yariables
Macros and Constants

P oo | R

-2 CMyFunctionilg 58 o To Definition public:

-3 TadsFunctionLib] = Go To Declaration [0 CFunctionName ()
F-=% IFunctionblame | - {

B0 TadsFunction | $%| Browse Definition '

2]

+3 MyFunctionLib Find All References r
- IFunchionhlame

DECLARE_REGISTRY RESCURCE]
[E=) 33 MyFunctionP3

% Filker To Type

Add 3 | "%, Implement Interface. ..
n - netionklan
=8 Copy Add Function, ..
| ENTRY {IFur
@ CFunctionlame(vail | 50tt Alphabetically © | R ENTRY {IDiz
& FinalConstruct(void Sark By Object Type o) Add Connection Point, ..

¥ FinalRelease(void)
PN — e Sork By Object Access

E]olution Explorer | C| Group By Object Type < |
Cutpu Properties
Show output from: Build > LB L S | S =1

lemsiml.idl
l=Processing C:\Prograw Files‘\Microsoft Wisual Studio #WWCO\Plat formSDEhincl

17) In the Implement Interface dialog, ensure that the ladsFunctionLib<1.0> library is selected in

the “Available type libraries” drop down. When that is complete, you will notice that the
[TadsFunction interface appears in the “Interfaces” list. Select [ladsFunction and press the
“>” button. When IladsFunction appears in the “Implement Interfaces” list, press Finish.

Implement Interface Wizard - MyFunction

j% Welcome to the Implement Interface Wizard

rJ_.;)

Implement interface from: Available type libraries:
(%) Project () Registry () File |IadsFunct\unLib<1.U> "l
Interfaces: Implement interfaces:

18) We’re almost done now. At this point we can concentrate on the actual function code (at
last). In the Solution Explorer tab of the Workspace View, locate your “[Function Name].h”
file and click on it to begin edit. Scroll down to almost the end of the source code and locate
the wizard generated code:

STDMETHOD (Compute) (VARIANT * datalIn, VARIANT * dataOut)
{

// Add your function implementation here.
return E NOTIMPL;
}

Remove this entire function as we are about to inject some example code.

@0 MyFunction - Microsoft Visual Studio

fle Edt View Froject Buld Debug Data Tooks Window Commurity Help

SA-id- S % @R 9 & -5 | b Debug - Win32 - | =
O HbalEEI= 20 e R o i

Solution Explorer - Solution 'MyFunction’ (Zpro... » & X stdafx.cpp FunctionName.h > X ||

& E | % crunctionmiame I v g

]

[solution MyFunction (2 projects) A 3 =3

= (1 MyFunction L sz

= 17 Generated Files B woid FinalReleasei) 2

@(h] MyFunction.h { il

o6+ MyFunction_i.c N be

(= [Header Files L g

1] Furctioniame.h =

[Functiontame, T g

|n] Resourceh
0] stdafx.h

= | Resource Files
&) Functioname.rgs
(=4 MyFunction.rc public:
“&] MyFunction.rgs

= |F Source Files
€4 Functiontame .cpp
|#] TadsFunction.idl
€+ MyFunction.cpp
=] MyFunction.def
1] MyFunction.idl

/¢ IladsFunction Methods

G stlsfx.cpp [OBJECT ENTRY_AUTO(_ uuidof (FunctionNeme), CFunctionName)
[Z] Readme.txt ~ L - - —
- i &
Rl Solution Explorer [Class View | [Property Manager |1€1 >
Output >0 x
Show output from: Build o3 [48 B | = | 5]
lsMyFunction - O error(s), O warningis) A~
[Skipped Build: Project: MyPunctionPf, Configuration: Debug Uin32 —----—— B
z»Project not selected to build for this solucion configuration
========== Build: l succeeded, 0 failed, 0 up-to-date, l skipped ==========
A
(24 “od= Definition Winda | #31Call Brawser | 5] Qutput [FhPending Checkins |5 Find Results 1
Ln 61 Col 1 chi NS

Ready

10

19) In the place of the code you just removed, insert the following example code:

STDMETHOD (Compute) (/*[in]*/ VARIANT* datalIn, /*[out]*/ VARIANT* dataOut

{

int argCount = dataln->parray->rgsabound->cElements;
if (argCount != 3)
{
return DISP E BADPARAMCOUNT;
}

// Now, get the input arguments array

VARIANT* argsArray = (VARIANT*) (datalIn->parray->pvData);

// Second Step: Check Types of each arg..... Either VT R8 (floating
// point value), VT BSTR (string value) for now...

if (argsArrayl[0].vt != VT R8) return E INVALIDARG;

if (argsArrayl[l].vt != VT R8) return E INVALIDARG;

if (argsArrayl[2].vt != VT R8) return E INVALIDARG;

// Third step: Get the actual values of each arg by extracting from
// the array of input arguments

register double pl = argsArray[0].dblVal;

register double p2 = argsArray[l].dblVal;

register double p3 argsArray[2].dblVal;

// Final step: Perform your function's purpose and return the output
// value. Because we're returning a number, the return type is VT RS
// (double) for now. Iads will convert if necessary..

dataOut->vt = VT_R8;

dataOut->dblval = pl + p2 + p3;

return S_OK;

11

When that step is complete, your code should like something this:

28 MyFunction - Microsoft Visual Studio

fle Edt Yew FProject Buid Debug Data Iools Window Communty Help

A-HA-Fdd @9 B~ L b pebug - Win32 - [soui A= ECE S e
DOdba & =2 0 3 BB) o
Solution Explorer - Solution MyFun... + 3 X stdafx.cpp,” FunctionName.h -

=R | %2 CFunctionhame v || -@Finakrelsase()
[Solution ™MyFunction' (2 projects) {
= [MyFunction)

& L Generated Files L
aln] MyFunction.h
26+ MyFunction_i.c

£ [Header Fies

|n] Functionbame.h
] Resource.h

3| =%

00100 | | /1013 4125

// IladsFuncrion Merhods

public:
STDNETHOD {Compute) { /#[in] #/ VARIANT* dataln, /*[out]+/ VARIANT* datadut)
¢

] stdefxh int argCount = dataln->parray->rosshound->cElements:
& [Resource Fies it [argCount !=3)

&) Functionbame. rgs €

S MyFunction.rc return DISP_E_BADPARLMCOUNT:

&) MyFunction.rgs i
& [source Fies

€+ FunctionMame. cpp // Now, ger the input arguwents array

] IsdsFunction.idi VARIANT* argshrray = (VARIANTY) (dataln->parray->pvDatal; // Could use Safeirraviccessbata, but slow..

] MyFunction.con

=] MyFunction.def /4 Zecond Step: Check Types of sach ard..... Either VT RS (floating point walue), VT _BSTR (string value) £or now...

5] MyFunction.idl if | argshrray[0].vt '= VT RS) return E_INVALIDARG;

€ stdafx.con if { argsirray[1].vt != VT RS) return E_INVALIDARG;

] Reade.bt if [argsirray[2].ve != VT RS) return E_INVALIDARG:

= A MyFunctionPs
= T cenerated Files
C dlidata.c
96+ MyFunction_i.c
2] MyFunction_p.c
[Source Files
2] MyFunctionps. def

// Third step: Get the actual values of each arg by extracting from the array of input arguments
register double pl = argsirray(0] .dblVal:
register double p2 = argshrray(i] .dblVal;
register double p3 = argsirray[2] .dblVal;

// Final step: Perform your function's purpose and return the output value

/4 kdd em up and Ship it out... Because we're returning & nusber, the return type is YT_RS [doukle) for now
F /4 Iads will cenvert if necessary..

dataout->ve = VT_RS;

dataOut->dklVal = pl + p2 + p3;

return S_OK:

Yi
L ~
csolution ... [class view [Property .. | 1€ >
CutpLt ~ 1 x
Show output From: Build Y=
1*Build log was saved at "file://c:\MyFunctionDirectoryiMvFunction\MyFunceion)DebugiBuildbog. htn" -~
LefyFunetion - 0 erroris), 0 varningls)
Zrommem Skipped Build: Project: MyFunctionPs, Configuracion: Debug Win32 —--———-
ZProject not selected to build for this solution configuration
Buila: 1 0 failed, 0 up . 1 smippea E
= = =
[E3 Code Definition Window | 25 Call Browser | =] Output jpenmng Checkins | g Find Results 1
Ready Ln47 Col4 ch4 s

20) Now, build the solution. After the build is complete you’ll notice that we have link errors.
This is a continuation of the Visual Studio bug as noted in steps 11 and 12. To correct the
errors, we’ll need to add the newly created IadsFunction files into the StdAfx.cpp file.

In the Solution Explorer, click on the StdAfx.cpp file and add the following lines to the
source code:

#include “ladsFunction.h”
#include “ladsFunction i.c”

#9 MyFunction - Microsoft Visual Studio

File Edit ‘“iew Project Build Debug Data Tools Window Community Help

(1 -5 - 5 W @ | % Ga b Debug - Winaz - G
B oA = " d g & By Ll o
‘:'n:l\utiw:m Explorer - Solution MyFunction' (Z pro.., « 1 X stdafx.cpp | Functionflame.h - X
= @ | [F (Global Scoped - b
[Solution MyFunction' (2 projects) A E 4/ stdafx.opp @ source file that includes just the standard f
= (38 MyFunction /7 MyFuncrion.pch will be the pre-compiled header

=+ | Generated Files
o[h] MyFunction.h
oG] MyFunction_i.c
= [Header Files
] FunctionMame.h

1] Resource.h ! N e
] stdafx.h #include "IadsFunction i.c

/7 stdafx.obj will contain the pre-compiled cype informatcion

#include "stdafx.h”

%0100 L3¢ [1inict:3 imaias

#include "TadsFunction.h™

[= | Resource Files
“&) Functionhame.rgs
;.] MyFunction, rc
“@) MyFunction.rgs
= |F Source Files
4 FunctionMame, cpp
& TadsFunction.idl
Cﬂ MyFunction,cpp
=] MyFunction, def
] MyFunction.idl
<.cpp

s -

E3)alution Explorer (T Class view |2 Property Manager | € >
Oukput ~ 0 x
Show autput from: Build RSN

1=MyFunction. cpp ~

1>FunctionNane. cpp

1sLinking. . .

1 Creating library Debug\MyFunction.lib and chject DebugiMyFunction. exp

17Embedding manifest... kv

anda Definition \Window '}EICaH Erowset | =] Output 1%F‘ending Checkins iFind Results 1

Ready

21) At this point, you can begin modifying the code in the function to perform your specific
computation. For more background on how to pass arguments, check their types, and return
values, please refer to the SampleFunction projects included with this tutorial. Be sure to read
the comments in the supplied Compute functions.

If you have any further questions, you can search the lads Google Group or post a question:
http://groups.google.com/group/iads

22) After you are done modifying the code, build the Solution. By building your Solution, the
new dll should be registered so you’re ready to run and debug it now inside of Iads. The next
section in the tutorial describes how to debug the function.

If you want to use your function on another PC, you’ll need to register the dll on that specific
PC. Please consult the web for documentation on “regsvr32.exe” and how to perform this
procedure.

If you want to add another function, simply repeat steps 6 through 8 and steps 18 and 19.
You can add as many functions to this project as you would like and they will all be
accessible through the same dll (i.e. MyFunction.FunctionNamel, ...,
MyFunction.FunctionNameN). If you wish to create an entirely new dll and set of functions,
you will need to repeat this entire tutorial using a unique project name.

13

3. Accessing your new function in IADS
1) Run IADS and login to a test Desktop.

2) Click the “Configuration” button on the IADS Dashboard in the lower right corner of the

screen.
ParameterTool | Display Builder || ChangeDesktop Performance
Glebal Time Message Log S5awe Config Lg OHFF
lads Legs Configuration | HideDashboard Help

3) After pressing the button, the Configuration Tool dialog will appear. In the left window pane,
click the “Data” folder and then finally the “ParameterDefaults” table. This is the location in

lads where you will build a new derived parameter to test your function.

s ConfigurationTool: Editing table ParameterDefaults
File Edit “iew Tools Window Help

|ddlm[sz u|l-] |TISY [T E=
+-__ | Autornation 5 Para... | Parameter | ParamType | ParamGroup | ParamSubGrou
=] Data 184 |Import TestAscii2 ascii Rotor Test
Q DataGroups 185 | Import TestAscii3 ascii Ratar Test
Q Enveloes ” 186 |Impart TestAsciid ascil Rotar Test
._.dnf IR 187 |Import TestAsciis ascii Rotar Test
%) ParameterDefaultsState E— o
= : 188 |Import TestAperiodic float Rataor Test
%) ParametersSavedinDisplays — "
+_| Display 189 |Import TestSine float Rator Test
+-_ | Logs —
4| Test
+-aiy Groups
&l Susterm v |IZ === ParameterDefaults A MissionAttributes _} PlannedTestPointsExGroup | 4] |

4) Ok, let’s add a new derived parameter. For speed, we’ll simply copy the last line in the table

and then replace our new values as needed. Select the last row in the table by pressing the

row button (in the picture, row #189). After the row is selected, press <Ctrl+C> to copy and

then follow that by a <Ctrl+V> to paste. You should now see a copy of the last line placed
into a new row. When you’re done, the table should look something like this:

% ConfigurationTool: Editing table ParameterDefaults
File Edit View Tools

Window Help

|| m| B[22 d|le] TGS v
+-__| Automation ~ Para. .. | Parameter | ParamType | =]
= JEJ“ata 183 |Import TestAscii2 ascii Ri
Q DataGroups 184 | Import TestAscii3 ascii Ri
Q Envelopes 185 |Import | TestAscii4 ascii R
Q ParameterDefauits 186 |Import TestAsciid ascii R
=] ParameterDefaultsState o
H ParametersSavedinDisplays 187 | Import TestAperlodlc float Ru
+- | Display 188 |Import TestSine float Re
= | Logs 189 |Import Copy(1)_Of_TestSine float R
+- | Test
+-afl GIOUPS
2. @l Quetam v |[1<] <[=[=I[% ParameterDefaults A MissionAttributes A Pl

5) Click into the first column of the new row. As we go along, to proceed to the next cell simply

press the “Tab” key.

14

Leave the first column alone and simply press the Tab key to start editing the second column.
In the second column, type the name of your test parameter. Let’s call it “TestMyFunction”.
Once you are done, press the Tab key as always. Now let’s set the type of the parameter. Just
leave it “float” (i.e. 4 byte floating point number). In the future, if you’re testing an Ascii
return value, you’ll need to set this to Ascii.

At this point, keep pressing the Tab key until your arrive at the “DataSourceType” column.
Make sure that is set to “Derived”.

In the next column (DataSourceArgument) you’ll write your derived equation. Now you will
use the knowledge learned from the discussion in the above tutorial regarding the project
name and function name. Enter the function name followed by the arguments:

MyFunctionGroupName.FunctionName(5.0, 10.0, 30.0)

If you’ve used the same names as the tutorial above, the function would we written like this:
MyFunction.FunctionName(5.0, 10.0, 30.0)

If you want some variety to your test data, you can use something like this:
MyFunctionGroupName.FunctionName(Rand()*5.0, Rand()*10.0, Rand()*30.0)

Or if you already have specific input parameters in mind, you can do something like this:
MyFunctionGroupName.FunctionName(Param1, Param2, Param3)

In the next field (UpdateRate), type the sample rate that you desire to update your function. If
your equation is based off of other parameters, the sample rate will be automatically
computed and placed into this field when you Tab out of the cell.

Just for safe measure, press the Tab key until you get to the “FilterActive” column. Make
sure that it is set to “No”. We don’t want a filter to be affecting our output at this time, or it
could lead to confusion.

After these steps are complete, press the “Save” toolbar icon in the Configuration Tool; your
new parameter will appear in the Parameter Tool.

%t ConfigurationTool: Editing table ParameterDefaults
File Edit Yiew Tools Window Help

||QE||[;]|%%|QQ|§¢E¢||—1

Para...
Import
Import
Import
Import
Import
Import
Import

| Automation
| Data
Q DataGroups
= Envelopes
& ParameterDefaults
=| ParameterDefaultsState
=) ParametersSavedinDisplays
| Display
| Logs
+-_ | Test
<oy Groups

5 ml Syvetemn

=]
]

o
=

@
o

=)
&

co
=

=)
=)

co
@

~\d=lz=\Pa

15

6) To run the function, simply drop the parameter into any display. If you’re not familiar with
building a test display and attaching a parameter, continue the tutorial for more instruction.

7) To build a test display, simply create an empty Analysis Window by dragging the icon from
your Display Builder tool and on to your Microsoft Windows desktop and dropping it. After
you’ve dropped the Analysis Window, you have a choice to name the window.

T Display Builder
Iﬁa Displaysl ActiveX Cnntmlsl Alignment]

Folder

B EBLO0E cedb mm
tH 1010100 []
Anc[355 | Label ﬁ ===

8) Now simply repeat the process, but drop the “AlphaNumeric” display into the Analysis
Window (be sure drop the new display into the Analysis Window you’ve just created and not
on to the Microsoft desktop). After the drop is complete, you should see the new display in
the Analysis Window. The AlphaNumeric is a very simple text display that will be easy to
view our equation output results.

‘i Display Builder
Data Displaysl ActiveX Cnntmls} Alignmentw

9) Ok, now for the parameter attachment to the display. Click on the “Parameter Tool” button in
the lads Dashboard (bottom right hand corner of screen). The Parameter Tool dialog will
appear. The Parameter Tool dialog contains a list of all your available parameters in the
configuration. Now all we need to do is find our parameter.

ParameterTool Display Builder || ChangeDesktop Performance
Glebal Time Message Log Sawe Config Log OFf
lads Logs Configuration HideDashboard Help

16

10) In the top text field (quick find box), start typing the parameter name. I used the name
“TestMyParameter”, so if you’ve done the same then simply type “TestMy”. You’ll notice
that the window at the bottom opens as soon as it finds your parameter. Keep typing until you
see the full parameter appears. Once it’s visible, click on the parameter name and “drag” the
parameter into the display on the Analysis Window. As soon as you drop the parameter, data
should appear. This is the actual output of your function! See that wasn’t too bad ;)

Tib; ParameterTool EJ @ @

Testiy

Group

RawkK.amData

Rotor
0 |
Test

Parameter Shor +
TestMakeBlobC

TestMultiBlob

TestMyFunction

TestNGC |
TestOAlap1

TestPointTrigger

TestPolyM Jj
| 3

11) After your initial checkout is complete, you can move on to displays such as the Stripchart
that will show history and allow you to examine the data point by point for discrepancies.
Simply repeat the process above at step 8, but in this instance use the icon just under the
Analysis Window icon (first column second row). Make sure to save the configuration for
later.

12) If you want to debug the function using the Visual Studio 2005 debugger, continue to the
next section. This is the quickest way to ensure that your function is operating properly and
you are highly encourage to run through you function at least once using the debugger.

17

4,
1)

2)

Debugging your new function in IADS

20 MyFunction - Microsoft Visual Studio

Ele Edt Yew Project Buld Debug Data Tools Window Community Help

Bring up your Visual Studio custom function project, and place a break point in your
“Compute” method for testing.

|5 Solution MyFunctior (2 projects) & f

= Z MyFunction)

[Generated Files L

- (B Hoader Fles // ITadsFunction Methods

¢

€4 Functioniame. cop
return DISP_E_BADPARAMCOUNT:

[#] TadsFunction.idl
€] MyFunction, cop i
) MyFunction, def

#] MyFunction.idl J/ Now, get the input argunents array

G- - e | % G- & -1 b Debug - Win32 - [nouic D e ez [
3 % R 4] =2 3 @B Q) G 6 | o o
Solution Explorer - Solution ', = & X stdafx.cpp /FunctionName.h | v X
B & E | Crunctiontiame || b ComputeqUARTANT * datsln, ARIANT * detsOut) v
=
~

3 o (|| s
1| S‘MD‘EFUH‘RIDHM STDHETHOD (Cowpute) { /#[in] */ VARIANT® dataln, /7[ouc]?/ VARIANT* dataout |
1] stdafxh ¢

[Resaurcs Fiss @ int argCount = dataln->parrap->rgsabound->cElements;

= [source Files if (argount != 3)

<] stilafx.cop VARLMNT® argskrray = (VARIANT®) {dataln->parray->pvData): // Could use Safelrray.
(%] ReadMe.txt
[= 3 myFunctiones // second Step: Check Types of each @Xd..... Either VT_RE (floating point valus],
& & Generated Flles if (argsirray[0].vt != VI RS) return E_INVALIDARG:
o] didatac v if | argsirray[1].vt != VT_R8 | return E_INVILIDARG:
< k3 if | argsirray[2].vt != VT _R8 | return E_INVILIDARG; v
Jsolution.. [Fgclass .. [[FProper... | & >
Gutput ~ 1 x
show output from: Buid =2 A | =] &
LrBwild log was saved at "file:/fe: \vFunctionDirectory\MyFunced on\HyFunctdon\Debu\BuildLog. bt a
LsMyFunction - 0 error(s), 0 warming(s]
Zromen Skipped Build: Project: MyFunctionPs, Configuracion: Debug Win3Z ---—--
zrProject met selected to build for this solution configuration
Build: 1 , 0 failed, O wp . 1 skipped &
[T Code Definition Window 2515l Browser | (5] Output [[FhPending Cherkins |5 Find Resuls 1
Ln53 ol | chi IS

X09100 L 3¢ | 91013 245 g

Ready

Go to “Project->[ProjectName] Properties” drop down menu in Visual Studio, and in the

dialog that appears pick “Iads.exe” as your “Executable for debug session”. The Iads.exe file

is in your “C:\Program Files\lads\ClientWorkstation” directory. Add “/local” to your
“Command Arguments” field. When you are ready to continue, press the OK button.

MyFunction Property Pages

Corfiguration: | Active(Debug) | Platform: |Act|ve(W\n32)

V‘ [Configuration Manager. .. I

Debugger ta launch:

Common Properties

[=- Configuration Properties | Local windaws Debugger

]

The debug command to execute.

General
Debuaging C:\Program Files\IADS\Client\Workstationilads, exe A
C..‘C‘H' Command Arguments Jlocal
Llnkir | wtorking Directary
I\Rflanl est Tool aktach Mo
M?;Eurcas Eehugger T:’pe Auto
#ML Document Generakar TronmEn
Browse Information Merge Enwr?nmant es
Build Events S Debugging Mo
Custam Build Step
‘web Deployment
Command

Ok H Cancel H

Apply

18

3)

4)

5)

Build your Solution again for good measure and click on the “Go” command (or the F5 key).
lads will start. When lads starts, pick the configuration file you wish to use (possibly the
same configuration file as used in the last section) and click Open.

After lads initializes, open up the Configuration Tool and create a derived parameter in the
ParameterDefaults table. If you need more background info on how to do this, consult the
last section. If you’ve already created a derived parameter referencing your function, simply
click on your equation in the ParameterDefaults table.

Notice that when you “tab out” or finish the equation in the ParameterDefaults table, your
function will be called. At this point you can debug all of the argument types and make sure
you’re getting the correct items. If you have an argument error and return an error code from
your function, notice that you’ll get an error message inside of lads and the equation text will
turn red in color. Once you’ve checked out the arguments, you can remove the breakpoint
and debug the function with live data.

Add a display to the new Analysis Window (i.e. AlphaNumeric or Stripchart) as described in
the last section. If your parameter isn’t already attached to a display, simply drag and drop
your newly built derived parameter into the display. Your break point should now hit in the
debugger. You can now step through your computational code if necessary.

Again, for more background on how to pass arguments, check their types, and return values,
please refer to the Sample Function project included with this tutorial. Be sure to read the
comments in the supplied Compute functions.

If you have any further questions, you can search the lads Google Group or post a question:

http://groups.google.com/group/iads

19

http://groups.google.com/group/iads

5. Deploying your new function

When it comes time to deploy your new function to users on other PCs, you need to
consider a couple of issues. One issue is that your control may require some auxiliary dlls that
are not available on the other systems. If that occurs and the dlls are missing, the function may
not operate. To help minimize this possibility, you must always build your new function dll in
“Release” mode. You should never distribute a function dll that has been compiled under the
“Debug” mode. The debug mode uses libraries that will most certainly be missing on any

machine without Visual Studio installed. Beyond that, it is always best to ‘statically link” all the
runtime libraries. Also, since we have used ATL to build this function, we will need to statically

link the ATL library as well.

1) In Visual Studio, select the “Project->Properties” drop down menu. Make sure that the
“Configuration” drop down is set to “Release”. Under the “Configuration Properties-
>C/C++->Code Generation” tier, set the “Runtime Library” to “Multi-threaded (/MT)”.

Configuration: [F‘.elease v] Platform: [Actil.femfinﬂ) '] I Configuration Manager... l I
[#- Common Properties - Enable 5tring Pooling Mo
=8 Caonfiguration Properties T Enable Minimal Rebuild Mo
- General Enable C++ Exceptions Yes (/EHsc)
- Debugging Smaller Type Check Mo
- C/C++ Basic Runtime Checks Default
- General e p— Multi-threaded (/MT) [~]
- Optimization Struct Member Alignment Default
- Preprocessor) Buffer Security Check Yes
g PP ETTEIn L Enable Function-Level Linking Mo
Languagé 3 Enable Enhanced Instruction Set Mot Set
- Precompiled Heade Floating Point Model Precise (/fp:precise)
- Qutput Files . . .
 Browse Information Enable Floating Point Exceptions Mo
.. Advanced
- Command Line
(- Linker
- Manifest Tool
[+- Resources 3
- MIDL
- XML Document Genera Runtime Library
- Erol:n:sre Inf?rmﬁtiﬂﬂ Specify runtime library for linking. (/MT, /MTd, /MD, /MDd)
T r
OK l [Cancel] ’ Apply] |

20

2) Under the “Configuration Properties->General” tier, set the “Use of ATL” to “Static Link to
ATL”.

Configuration: ’Release v] Platform: ’Active(WinBZ] '] ’ Configuration Manager...] I
[#- Common Properties ~ | |E General
=8 Configuration Properties Output Directory ${ConfigurationName)
- General Intermediate Directory $(ConfigurationName)
- Debugging Extensions to Delete on Clean *objmillg® tlb* tli;* tih " tmp;*.rsp;*. pgc . pgd: 5 (TargetP
B C/C Build Log File §(IntDir)\BuildLog.htm
Gen.era.l _ Inherited Project Property Sheets
- Optimization B Project Defaults
-~ Preprocessar . Configuration Type Dynamic Library (.dll)
E:ndgeuijzr;eratlon e Use of MFC Use Standard Windows Libraries
- Precompiled Heade Static Link to ATL |Z|
. Output Files Minimize CRT Use in ATL Mo .
- Browse Information Character Set Use Unicode Character Set
. Advanced Commoen Language Runtime support Mo Cemmon Language Runtime support
. Command Line Whole Program Optimization Mo Whole Program Optimization
- Linker
- Manifest Tool
[+- Resources
- MIDL
- XML Document Genera Use of ATL i
[#- Browse Information = Specifies how ATL is used by the configuration.
P —T— 2 I
I [OK] ’ Cancel] ’ Apply]

3) Once you’ve made these changes to your project, you should rebuild your ‘solution’. Make
sure once again that your current configuration is set to “Release” and then select the “Build-
>Rebuild Solution” drop down menu option. After this step is complete, your function dll
should be in your project “Release” folder. It should now be ready to deploy on another
system.

The function dll will need to be copied to the other PC and ‘registered’. In order to register
the dll, you’ll have to run the ‘regsvr32.exe’ program. One easy way to accomplish this is to
double click on the dll in Windows Explorer. When asked what program to execute on the
dll, navigate to the Windows\System32 directory and choose the regsvr32.exe file. This
procedure may be different if the operating system is a 64 version. Please consult the online
documentation for specifics.

If the dll fails to register at this point, it most likely failed to statically link the needed dlls.
We can investigate which dlls are missing by using the “Dependency Walker” tool. The
Dependency Walker program is located within the Microsoft Visual Studio\Common\Tools
directory and is named “Depends.exe”. Copy Depends.exe from your development PC to the
target PC and run the program. From the File drop down menu select “Open” and choose
your function dll. Examine the module list in the bottom window pane. Any missing
dependent dlls should show up with a question mark. Search for those dIl names on the net
and find out their purpose. It might help you narrow down what solution setting you have
missed. It’s also possible that the missing dll is a private library that you are using, in which
case you’ll need to either static link or copy that dll to the target machine as well.

21

6. Advanced Topics
6.1. Initialization and Execution of your Custom Function

In this section, we will review the steps taken during initialization and execution of your
custom function. It is important to be aware how lads creates your function, as well as how it
calls your function during both the “initialization stage” and the “computation stage”. This will
affect how your Compute function is designed. For reference, you can refer to the
SampleFunction2.h file in the SampleFunctionVVC project listed above.

First, let’s examine the initialization stage of your function in general. Each and every
time a derived parameter is created that references your custom function, an instance of your
custom function object is created within the parameter’s computational engine. When the
parameter requires data, this object is then used to produce results as described by your specific
custom code. As a general rule, your custom function object is created each time a user drops a
derived parameter referencing your function into a display, enables and IAP parameter
referencing your function, or edits an equation in the ParameterDefaults table referencing your
function.

Yt ConfigurationTool: Editing table ParameterDefaults
File Edit View Tools Window Help

EETE Y R e A s = B
-~

+-__| Automation DataSourceType |DataSourceArguement UpdateRate |LLNegative
-] IEEtE 228 | Derived SampleFunctionV'C_SimpleFunction2("Text", 1.2) 100.0

@ DataGroups 229 | Derived SampleFunctionVC.SimpleFunction2("Text", C, D) 2604 1666,

=) Envelopes 230

=) ParameterDefaults ||

Extending this logic, each “instance” of your function called from within lads is a
completely independent unit of code, akin to a C++ object with member variables and
corresponding code. In essence, each derived parameter is running a fully independent object.
Obviously, this is necessary if your function maintains states such as “last value” or perhaps a
specific “matrix” input file that is required and chosen by the user via the function’s input
arguments. In reality, your function can be called from many different derived parameters
simultaneously, each with their own unique set of input arguments, and possibly computing at
different times within the data. Because of this wide variety of possibilities, be aware that any
reference to “static” or “global” variables should be considered carefully. Global variables will
allow you to “share” information between multiple instances of your function, but you’ll have to
be very careful about the timing considerations. If you do decide to venture down this path,
please do post your scenario to the lads Google Group. In general avoid all use of global
variables and instead, use member variables within the class to hold any necessary state
information.

Now let’s examine the initialization stage in more detail. The function name (i.e. ProgID)
within the derived equation is used to call the “CoCreatelnstance” function in the Microsoft
COM libraries to create your object. Once your object is created within lads, the
“FinalConstruct” method is called. In this method, you can put any initialization needed that is
independent of the input values to your function. This most likely would be limited to things
such as setting member variables to a known initial value.

22

STDMETHOD(FinalConstruct) { woid)
{

<7 The ATL "goo" will call this upon construction of your class. It be called once per class creation.

<7 Ewery derived parameter that get's called and uses this function will create it's own "instance" of this

<7 clas=, =o if you have 10 derived parameters calling the function. this function will be called 10 times. but

#+ mach call will be a complete unigue copy of this class.

<+ If you want to create any "global" resources, that are shared between all the class instances, make sure you

<7 create a global static wariable (i.=. above thi= class definition =ee "ezanple shared warisble"). Anvything that you
<+ want kept separate per instance and not shared, declars in the member variable selection below (see CComBESTE mStrin

#+ Thi= wariable i= for performance and initialization reasons as you will see below in the Compute function.
< Malke sure to add thi= member warisble to your class —» bool nWaslnitialized
nWasInitialized = false:

<+ Preparation for an example on how to output a "blob" data
<< For now, we just set our Safsirray pointer to HULL. We'll do the allocation in the Compute function init section
nS4 = HULL:

return S 0K

For instance, say you were building a function allowed a user to specify a number of data
points to “buffer” before computing a results. Of course you’ll need a member variable in the
class to hold this buffer. During the FinalConstruct, you would set your member variable buffer
pointer to NULL, but you would not allocate the memory. At this point in the initialization, you
don’t have any of the argument values from the user’s equation, thus you don’t know how large
to allocate the buffer. In the next paragraph, we will discuss a way to solve this issue.

After your FinalConstruct function is called, Iads then calls the “Compute” function
within your object. The main purpose of this first call to your Compute function is to validate the
equation input variables. Understand that the custom function interface is flexible enough to
allow any number of input arguments, and each argument could be a different type (float, ascii,
blob, etc). It is at this exact time, the very first call to your Compute function, which you will
need to check the number and types of your input arguments. In fact, lads will only listen to your
input argument error return codes on the first call to your function. Since we only want this code
to execute on the first call to the Compute function (and never again), a Boolean member
variable can be used to solve the problem. Simply add a member variable to your class and
initialize it to false in the FinalConstruct.

STOHETHOD(FinalConstruct){ wvoid)
s Thi= wariable iz for performance.and initialization reasons a= you will =ee below in the Comnpute function.

< Hale sure to add this member warisble to your class —> bool mWasInitialized
nWasInitialized = false:

The secondary purpose of this first Compute function call is to give you an opportunity to
initialize any further variables (such as buffers, etc). Now, inside the Compute function you can
check the Boolean member variable’s value, perform your argument checks and buffer
initialization, then set the member variable so the code is not triggered again. See the example
code snippet below or refer to the SimpleFunction2.

23

STDMETHOD{ Compute){ ~#*[in]#*/ VARIANT®* dataln, -#[out]*- VARIAHT* datalut)}
{

< Get the input arguments array
register VARIANT* argsirray = (VARIANT*)(dataIn rparray—:pvData); - Could use SafebrrayiccessData. but slower. .

<« The wery first call to this function iz designated as an "initializion call".
< Check all paramster types here and then never do again. Adding this check to your code will spesd up the performance
if { ImWasInitialized)
{
< First Step: We need to check how many arguments were passed into our function from the user
#» Exanple, if the user creates a deriwved paraneter with the function —» SampleFunction. SimpleFunctionZ("Format'., Vali
#< The argument count would be 3
int argCount = dataln-:parray-:rgsabound-:cElenents;
if { argCount != 3) zreturn DISP_E BADPARAMCOTUNT:

< Second Step: Check Types of esach arg. Either VT_RE8 (floating point walue), VT_BSTRE (string wvalue) for now. ..

< In TADS, most every type of numerical argument is passed wia an § byte floating point walus VI_EE.

< If you're in doubt. use ¥T_RE. You can also break hers in the code and examine the argsdrray[H]. vt walus to se= the
Exanple, if the user creates a deriwved paraneter with the function —» SampleFunction.SimpleFunctionZ({ "Format'., Vali
#+ The argument type for argl would be VI_BSTE. .. and arg2-srgd would be VT_RS

if { argsdrray[0] wt |= WT_BSTR) return E_THVALIDARG:

if { argsArrav[l].wt |= VT _FE8) return E_INVALIDARG:

if { argsArravy[Z2].vt |= VT_E8) return E IHVALIDARG:

#« The benefit of initializing here i= that you can return an error code back to the user in the event of failure

<+ Here's a list of possible return walues at this point:

s+ A) E_FAIL or E_UNEXPECTED —: Returns an unspeclfled srror" to the user

A< BY E_OUTOFMEMORY -3 Return= an "out of memory error' to the user

A 2y E_INVALIDARG or DISPE E TYPEMISHATCH —» If one or more of the function arguments were of incorrect twvpe (i.e. nur
<+ D) DISP_E BADPARAMCOUNT —» If the number of function argumnents were incorrect, returns an "invalid number of parame

#+ Do whatever kind of alternatiwe initialization you nesd to here as well.
< Examnples: Connecting to a TCP socket. Serial Port. or any other type of external device

o Connecting to an external datsbase or any external file
S Freparing computational lookup tables or anything else to prepare for calculation
o Allocating memory buffers for this function

regizter int lengthOfBufferirg = {int)argsdrray[l].dblVal:
mniyBuffer = nev float[lengthOfBufferdrg]:

mnWazlnitialized = true;

Now that the initialization stage of your function is complete, lads will call your function
as data is required. This we will refer to as the “computation stage”. For each data value needed,
lads will call your Compute function with all the necessary input data. Your custom function will
perform the processing and return a single value (the answer). This single answer will then be
returned to the derived parameter, buffered to limit redundant computation, and be provided to a
display (or other consumer).

The sample code in SampleFunction2.h will show you how to handle the various types of
input data (float, string, etc). It will also show you how to return these different types as your
custom function result. This will allow you to create custom functions to return data for almost
any situation. Again, if you need more help on this subject don’t hesitate to post a question to the
lads Google group. For more advanced topics, such as returning multiple values from your
custom function, please continue to the next section.

6.2. Returning Multiple Results from your Custom Function

One of the apparent limitations regarding the custom function technique described above
is that it seems unable to return multiple values. As we have learned in the previous section, each
input argument that is supplied in the derived equation is sent into the Compute function, the
custom code uses these input values to calculate the result, and then the single result is returned
to lads. Suppose you had a function with 5 input arguments, but instead of only outputting a
single result, it outputs 5 results. This problem can be solved in a simple fairly manner.

*3 ConfigurationTool: Editing table ParameterDefaults
File Edit Wiew Tools Window Help

[Bulw|smeloc]nalfATE|9|0>TBE | n i B
#-_] Automation ParameterDefaults ‘ Parameter | ParamType | ParamGroup | ParamSubGroup | ShortName ‘ LongName | Units | Color
= JEETE 228 |PD1 MyMultipleOutParam bloh Group SubGroup

| DataGroups [29|

=] Envelopes B

(5} °arameterDefaults Il ey

24

When a function needs to output multiple answers in a single computation, we can simply
output an “array” of answers. This array type output is referred to in lads as a BLOB (binary
large object). Once the array/blob is output from your custom function, it can then be returned as
a blob type parameter and the individual values in the array can be extracted using another
derived function called “Decom”. In summary, we simply return an array of answers (however
many required by the individual function), and then we can extract each value in its own unique
derived parameter using the Decom function. Now, let’s go more into detail about this technique.

First of all, we’ll need to create an array to output our 5 results. lads requires that this
data array be allocated using Microsoft’s “SafeArray” mechanism, so we need to add a pointer of
type SAFEARRAY to our class. In this case, [used “mSA” as the member variable name.

B R

A4 Member wariables of thi= custom function
CComBSTE nStringCutput

CConBSTE nErrorString;

SAFEARRAY* mSA:

SAFEARRAY#* mSADouble;

bool mWaslnitialized;

T
fendif - SIMNFLEFUHCTIONZ H_

Now we’ll need to allocate the memory for this array. Carrying on the initialization discussion
from the last section, we’ll perform the allocation in the Compute function within the “first time
only” portion of the function. To create the array, we’ll simply call the SafeArrayCreateVector
function with the type VT_UI1 (byte) and the number of bytes required.

if { ImWasInitialized)

First Step: We need to check how many argquments were passed into our function from the user

< Example, i1f the uszer creates a derived paramester with the function —» SampleFunction. SimpleFunction2{ "Format", Va
< The argument count would be 3

A4

<+ At this point in time, all Elobs are "fixed size"., so yvou'll nesed to determine a constant size in bytes and not che
In this sxample, we will create a single blob output array that will hold 2 float walues.

The first 4 byte entity i= an un=igned integer which will hold the =ize of the blab {in bytes)

<+ The remaining bytes will hold our 2 floating point numbers

#+ The length in bytes would be —» =izeof(unsigned _ int32) + 2 # =sizeci(float)

con=t int cHunFloatsInBlob = 2:

con=t int cBlobsSizelnBytes = =sizeof{ unsigned _ int32)-#*HeaderSizelnBytes*s + cHunFloat=InEBElob * sizecf{ float) %

A How, let's allocate the Safedrray to contain our bloh data
nSh = ::SafedrrayCreateVector({ VT_UIl, 0, cBlobsSizelInBytes):
if (mSA == NULL)
<7 Examnple of returning a custom error string to Iads. Ses GetDescription below for further info

nErrorString = "SimpleFunction? failed to allocate memory for Blob output”)
return E_OUTOFHEHORY :

Now let’s focus in on the actual “size in bytes” required by the allocation. To do this properly,
we have to describe in more detail the actual structure of the blob. In a blob, the first 4 bytes of
the array is a number specifying the total length of the blob (in bytes).

TotalSizeOfBlobinBytes IEI‘_.,rtesz 1-4
DataPartion Bytes: 5-N

25

With this fact in mind, the equation to compute the total length of allocation needed is:
BlobSizelnBytes = sizeof(unsigned __int32) + TotalSizeOfDataPortionInBytes
Or
BlobSizelnBytes = 4 + TotalSizeOfDataPortionInBytes
Or in our example using 5 floating point numbers (4 bytes per number)
BlobSizelnBytes = sizeof(unsigned __int32) + sizeof(float) * 5

At this point, you should have the return blob/array allocated, so now let’s examine how to
update our values in the array and return the results. First, we’ll need to access the array pointer
within the SAFEARRAY. To do this, we simply call the SafeArrayAccessData function.

< Get a pointer to the safeldrray data that we allocated in the "initialization stage" above
BYTE* =a;
cSafedrravhccessData(mSA, (vold**)i=sa)

Second, let’s set the blob size into the array. To do this, we simply cast the pointer returned from
the SafeArrayAccessData to a type unsigned __int32* and then set the value to the total number
of bytes in the blob. The total number of bytes in our example is 24 (4 bytes for the size field +
20 bytes for the 5 float values).

< How acceszs the first 4 byte integer =o we can inject the Blob size (in bytes).
un=zigned _ int3Z# blobSizelnBytes = (unzigned _ int3Z2#*)=a;

Set the blob =ize in bytes
*blobSizelnBytes = cBlobsSizelnBytes:

Now we can inject our computed results into the array. To do this, we need a pointer to the type
of variable we are going to store. We also need to make sure that the pointer starts at the proper
location in the array (past the blobSizelnBytes fieldwe just set above).

<« How let's inject the data into the remaining part of the Elob.
<« et a pointer to the payload portion of the Blob (=tarting at Gth byte)
float*® payloadValues = (float*){=za + =zizeoi{unsigned _ int32));

<« Set arg? and argd into the blob pavload (arrav)

payvloadValue=[0] = returnValuesl:
pavloadValue=[1l] = returnValues?Z;
pavloadValue=s[2] = returnValue=i;
pavloadValues[3] = returnValusd:
payloadValue=[4] = returnValuesh:

Instead of setting each value individually, you may want to simply call another function to
compute the results and pass in the output array pointer. You can then set the return values from
within that function and also keep all of your “calculation” code separate from the “interface”
code. This is a much cleaner approach overall.

s Likewi=ze, if wou had your own internal function to compute the results. you could =imply pass in the input args
s and a reference to thiz array. Your function would simply write the result directly into the array

<7 Make =zure wou maintain a consistent order to your outputs, because we'll hawe to extract them "one by one" later
CalculatedyResult=s({ arg?. argl. payloadValues):

26

After we are complete, this is how the blob layout will appear in memory (zero based index):

24 Bytes: 0 -3
ReturnValue1 Bytes: 4 -7
ReturnValue2 Bytes: 8 - 11
ReturnValue3 Bytes: 12 - 15
ReturnValued Bytes: 16 - 19
ReturnValues Bytes: 20 - 23

Once you have completed setting the return values into the array, it’s now time to return the blob
to lads. All we need to do here is call SafeArrayUnaccessData, set the dataOut->vt to
VT_ARRAY|VT_UIL1 (i.e. an array of bytes), and assign the dataOut->parray variable to our
SafeArray member variable (mSA). To finish the function and return the value to lads, we
simply return S_OK from the Compute function.

SafebrravinaccessDatal mSi)

<« Finally. =et the blob output type and reference the safeirray we just built
datalut—:>vt = VT_ARRAY|VT _UI1l:
datalut—:parray = mSi;

1

return S_0K:;

At this point in time, we can now test the function. To proceed, we’ll need to build a
derived equation to call your new function. We will also need to build derived functions to
extract the results from the blob. Compile your project and clean up any errors. When that is
done run lads, and open up the Configuration Tool. Open the ParameterDefaults table and add a
parameter that calls your new function.

s ConfigurationTool: Editing table ParameterDefaults

File Edit View Tools Window Help

| |® | bR i [-TE3 =]| % Ntiered H

+- | Automation A ParameterDefaults |Parameter |F'aramType ‘ ParamGroup |ParamSubGruup |SthName |LDngName ‘ Units | Color

- | Data 228 |FPD1 IMyMultipleOutParam blob Group SubGroup
=] DataGroups 229
=] Envelopes = |

[P arameterDefaults

Notice in the figure above that the “ParamType” column is set to “blob”. This is an essential step
that you can’t forget. If the ParamType is not set to “blob” for the derived parameter, you will
most likely get random return results or zero while attempting to extract the 5 embedded values.

Yt ConfigurationTool: Editing table ParameterDefaults

File Edit View Tools Window Help

| E | m bR |oe || TS| T 5 | s Ntrteed [
+- | Automation e’ DataSourceType | DataSourceArguement UpdateRate | LLMegative
-] JEEtE 228 | Derived SampleFunctionVC_SimpleFunction2("Text", 1,2) 1.0

&) DataGroups 299

=] Envelopes 230

Q ParameterDefaults en

Now, scroll over to the DataSourceType column, and set it to “Derived”. In the
DataSourceArguement column, type an equation that calls your new function. To debug the
equation, you might want to start with a set of known input values (constants). After completing

27

the equation, save your configuration. We can now actually test the raw output of the custom
function.

At this time, if you wish to see the raw output of your function you can drop your newly
created derived parameter into the “ladsBusMessageDisplays.BlobViewer” display. If you right
click on the ActiveX tab of the Display Builder in lads, you can add the Blob Viewer to your
available displays list. Once that is complete, drag and drop the Blob Viewer display into an
AnalysisWindow. After the display appears, drop your new derived parameter into the display.
Notice that the Blob Viewer only shows the “payload” portion of your blob. The size field in the
blob has been stripped by Iads. This is to be expected, so don’t be alarmed.

Each 4 bytes in the display is a single 32 bit float return value. Bytes 0 .. 3 show the first
return value, bytes 4..7 show the second, and so on. Note that since our blob has a total of 5
return values, there is an extra 4 byte field at the end containing all CD values. This is an artifact
of the display and not actually in the blob itself. This issue should be fixed in a new version of

lads soon, so you can safely ignore it for now.

This window has NOT been classified

@E;]'._f' IE o rec i L 1 T

0o 0o a0 aF 0o 0o 0o a0
oo 0a 40 40 0a 0o 0o a0 L
oo 0o 0a aF CD Ch Ch Ch

|]} |

This window has NOT been classified

Now that we know our blob is alive (no pun intended), we can continue on and actually
extract each individual value. When this step is complete, we can drop each individual return
value into its own display, or use these return values as an input into another derived equation.
After extraction, it will simply be “yet another derived parameter” and you can treat it like any
other parameter in the system.

28

Yt ConfigurationTool: Editing table ParameterDefaults

File Edit View Tools Window Help

@ E | &L BB gz -|TE|D |82 = E | % [NotFitered -
+-| Automation L ParameterDefaults | Parameter | ParamType | ParamGroup | ParamSubGroup | ShortName | LongMame | Units
=] Data 228 | PD1 MyMultipleOutP._. blob Group SubGroup

Q DataGroups | 229|PD1 ReturnValue1 float Group SubGroup

Q Envelopes | 230|PD1 RetumValue2 float Group SubGroup

= | 231|PD1 RetumValue3 float Group SubGroup

Q ParameterDefaults! |-

Z) ParametersSavedir | 232|PD1 ReturnValue4 float Group SubGroup
+. | Display | 233|PD1 RetumnValued float Group SubGroup
+-_ | Logs | 234
+-_ | Test bt
< > |<f <] =[=I[" BlobDefinitions _} ParameterDefaults 4 Envelopes } DataGroups } UserValidationLog [« [

To extract the individual values from the blob, we need to create one derived equation per
value. Each derived equation will use the “Decom” function to do the extraction work. Now,
return to the Configuration Tool and ParameterDefaults table to add 5 more derived parameters.
For each derived parameter, you must set the “ParamType” column to the type of the extracted
value. In our case, we packed 5 floating point values (32 bits each) into the blob, so the
ParamType must be set to “float”. If you skip this step you will again most likely get random
values or zero.

At this point we’re almost done. All we need to do is to write the extraction equations
using our blob parameter as the input. Scroll over to the DataSource column and set it to
“Derived”. In the DataSourceArguement column, add the following equation:

Decom(MyMultipleOutParam, 0, 4, 0, 31, 1, TRUE, FALSE)
The equation looks a little cryptic so, let’s go over the Decom function arguments:

FuntionName: Decom

Arguments: 8

ArgumentList: InputDataParam, ByteOffset, NumBytes, StartBit, StopBit, DataTypeToReturn, Signed,
ReverseBytes

DataTypeToReturn -> { Integer=0, IEEEFloat=1, 1750Float=2, CharString=3, Array=4 }
Signed -> { False=0, True=1} or just use TRUE/FALSE
ReverseBytes -> { False=0, True=1}

Example Usage to extract a 4 byte IEEEFloat: Decom(MyIntParameter, 0, 4, 0, 31, 1, TRUE, FALSE)

Basically, the Decom function is an all purpose blob field extractor which can convert the
bit patterns extracted into any available type in lads. With this in mind, let’s focus back on
extracting our values.

Decom(MyMultipleOutParam, 0, 4, 0, 31, 1, TRUE, FALSE)
The first argument of the Decom function is the blob source parameter. In this case, we use the

derived parameter that produces packed answers from our custom function. This should be the
same parameter we dropped into the Blob Viewer above.

29

The second argument is the “starting byte offset” of the item we wish to extract within the blob.
The byte offset is simply the number of bytes from the start of the payload section of the blob
(remember to now ignore the 4 byte size field). Since we are defining the equation for the first
return value, the starting byte offset will be zero (all the offsets are zero based in this equation).

The third argument is the number of bytes to extract. In this case, the size of the return value is 4
(4 byte floating point number). If you had chosen to pack double precision floating point values
(8 bytes each), this argument would be set to 8.

The fourth argument is the “starting bit offset” of the data within bytes identified in arguments 2
and 3. In this case, we want all the bits so we simply specify bit 0. Likewise, the fifth argument is
the “ending bit offset” of the data identified in arguments 2 and 3. Again, we want the full 32
bits, so we’ll specify 31.

The sixth argument is the actual “data type” that we want to return from the function. In this case
it’s an IEEE float, so we’ll specify 1. The seventh and eighth arguments are simply the signed
flag and whether we need to reverse the bytes before data type conversion. We’ll specify TRUE
and FALSE respectively.

Now that we understand the Decom function in general, let’s simplify our task. Since all
of our return values are all of the exact same type and size, we can generalize our equations as
such:

Decom(MyMultipleOutParam, index*sizeof(returnValue), sizeof(returnValue), 0,
sizeof(returnValue)*8-1, DataType, TRUE, FALSE)

Or for our specific example

Decom(MyMultipleOutParam, index*4, 4, 0, 31, 1, TRUE, FALSE)

Where index goes from 0 to 4 (0 being our first item and 4 being our fifth item)
Using this generalization, we can easily write all of the functions needed:
ReturnValuel => Decom(MyMultipleOutParam, 0, 4, 0, 31, 1, TRUE, FALSE)
ReturnValue2 => Decom(MyMultipleOutParam, 4, 4, 0, 31, 1, TRUE, FALSE)
ReturnValue3 => Decom(MyMultipleOutParam, 8, 4, 0, 31, 1, TRUE, FALSE)
ReturnValue4 => Decom(MyMultipleOutParam, 12, 4, 0, 31, 1, TRUE, FALSE)

ReturnValue5 => Decom(MyMultipleOutParam, 16, 4, 0, 31, 1, TRUE, FALSE)

30

File Edit View Tools

Window Help

Ti; ConfigurationTool: Editing table ParameterDefaults

EEIEREY AN o - S - R S
+- | Automation A DataSourceType | DataSourceArguement | UpdateRate | LLMegative | LLPositive
=-__| Data Derived SampleFunctionVC_SimpleFunction2| "Text", 1,2) 1.0

Q DataGroups Derived Decom(MyMultipleQutParam, 0, 4. 0, 31, 1, TRUE, FALSE) 1.0

Q Envelopes Derived Decom(MyMultipleOutParam, 4, 4, 0, 31, 1, TRUE, FALSE) 1.0

S} ParameterDefaults . :

Z) ParameterDefaults: Derived MyMultipleQutParam, 8, 4. 0. 31. 1. TRUE, FALSE) 1.0

= Derived MyMultipleOutParam, 12, 4. 0, 31, 1. TRUE, FALSE) 1.0

=) ParametersSavedIr . .

W Derived Decom(MyMultipleQutParam, 16, 4. 0, 31, 1, TRUE, FALSE) 1.0

| Display

When you are finished writing all of the extraction equations, your ParameterDefaults table
should look similar to the above figure. Make sure to save your configuration upon completion.

Now, all that is left is to drop the individual parameter into displays and test. If you have any
questions, please don’t hesitate to post them to the IADS Google group.

