

Creating an IADS

Custom Derived Function

Using C++ VS2005

March 2014

SYMVIONICS Document SSD-IADS-048

© 1996-2014 SYMVIONICS, Inc.

All rights reserved.

2

Table of Contents

1. Introduction ... 3

2. Creating your new function using the C++ New Project Wizard 3

3. Accessing your new function in IADS ... 14

4. Debugging your new function in IADS ... 18

5. Deploying your new function ... 20

6. Advanced Topics ... 22

6.1. Initialization and Execution of your Custom Function ..22
6.2. Returning Multiple Results from your Custom Function ...24

3

1. Introduction

This document assumes you are using Microsoft Visual Studio 2005. The tutorial has not

yet been attempted on a newer version, although it may still apply. This instruction guide will

cover:

1) Creating your new function using the VS2005 C++ New Project Wizard.

2) How to access your new functions in IADS.

3) How to debug your new function in IADS.

2. Creating your new function using the C++ New Project Wizard

1) Open up VS2005 and Select “File -> New->Project”.

2) In the New Project dialog that appears, choose the “Visual C++->ATL” tier and click the

“ATL Project” option. At this point, please read the next step before you finish completing

the dialog. There are some important considerations when choosing the proper project name.

3) The project name you choose will become part of the function identifier name (aka ProgID,

see inset). When it comes time to use your function in IADS, users will call your new

function in a derived equation based solely upon its ProjectName.ObjectName (we‟ll add the

specific object name later). Plan on creating many functions in one “project” (most common

and easier to manage the code). One way to look at it is that the project name is akin to the

“Genus” of your function, so shoot for generality. Consider prefixing the project name with

4

your organization like “Nasa” or “Lockheed” and the type of functions you‟ll be adding

(example: NasaFluidFuncs).

Now, in the fields at the bottom of the dialog, enter the project name, location, and the

solution name.

4) After pressing OK, the “ATL Project Wizard” dialog will appear as below.

5) Click the Next button in the Wizard. On the new wizard page, ensure that the “Dynamic Link

Library (DLL)” is checked. Every function that runs in IADS is of type DLL because it

allows for maximum speed in computing calculations. Press the “Finish” button and the

Wizard will set up your project.

5

6) Next, go to the “ClassView” tab in Visual Studio‟s workspace and right-click on the project

name. Choose “Add->Class”.

7) Upon adding a new class you will be presented with a dialog. Click the “ATL” tier and “ATL

Simple Object” as shown below. When that is complete, press the “Add” button.

6

8) On the first tab, enter the name of your function in the “Short Name” field. The wizard will

fill out the rest of the tab automatically. For this example, I used “FunctionName” as the

short name. The name entered will be combined with your project name and will present the

final function name inside of Iads (ProjectName.FunctionName) as explained on page 1. See

the “ProgID” field in your dialog for your final Iads function name. Update: Newer

VisualStudio versions do not automatically populate the ProgID field. Please ensure the

ProgID field contains your specific ProjectName.FunctionName text. If not, please type in

the appropriate text manually. Press “Finish” to continue.

9) At this point, the Wizard will automatically create the shell of your function code. All we

need to do now is to take care of the interface portion of the function. Basically, we‟ll need to

implement the defined “IIadsFunction” interface so that the function will be compatible with

the Iads environment.

Download the ComFunctionHelper files on the Symvionics web site:

http://iads.symvionics.com/Downloads/IadsComFunctionHelper.zip

After you‟ve downloaded the zip file, unzip its contents into your project folder. While

unzipping, you‟ll notice a file called “IadsFunction.idl”. That‟s the file we‟ll use to

implement the interface.

10) Now let‟s add the IadsFunction.idl to the project. Click the Solution Explorer tab at the

bottom of the Workspace viewer.

http://iads.symvionics.com/Downloads/IadsComFunctionHelper.zip

7

11) Expand you Solution, right click on the Project name, and select “Add->Existing Item…”

12) In the File Name box, type “*.idl” and then the enter key to show the Interface Definition

Language files. Choose “IadsFunction.idl” and then press the Ok button to add the file into

your project. This should be the same IadsFunction.idl file that you unzipped in step 9.

8

13) Due to an apparent bug in Visual Studio 2005 (and beyond), we‟ll have to manually correct

the output of the IadsFunction.idl file. Apparently, Visual Studio attempts to merge this

information into the output of your project‟s idl file, but it does seem to work properly. Right

click on the IadsFunction.idl in your Solution Explorer and select “Properties”.

14) In the Property Pages dialog that appears, select the “All Configurations” drop down in the

upper left hand corner of the dialog. Open the MIDL->Output tier in the left window pane

and correct the “Header File”, “IDD File”, “Proxy File”, and “Type Library” fields using the

base name “IadsFunction”. When you are complete, the dialog should match the picture

below. After confirming the dialog contents, press OK.

9

15) Now, build your Solution. After the build process is complete, a “typelib” file will be

created. We can use this typelib file to implement the IadsFunction interface. The typelib file

is simply a compiled binary version of the IDL file.

16) Go back to the ClassView tab of the Workspace viewer. Right click on the “C[your function

name]” class object and then choose “Add->Implement Interface…”

10

17) In the Implement Interface dialog, ensure that the IadsFunctionLib<1.0> library is selected in

the “Available type libraries” drop down. When that is complete, you will notice that the

IIadsFunction interface appears in the “Interfaces” list. Select IIadsFunction and press the

“>” button. When IIadsFunction appears in the “Implement Interfaces” list, press Finish.

18) We‟re almost done now. At this point we can concentrate on the actual function code (at

last). In the Solution Explorer tab of the Workspace View, locate your “[Function Name].h”

file and click on it to begin edit. Scroll down to almost the end of the source code and locate

the wizard generated code:

 STDMETHOD(Compute)(VARIANT * dataIn, VARIANT * dataOut)

 {

 // Add your function implementation here.

 return E_NOTIMPL;

 }

Remove this entire function as we are about to inject some example code.

11

19) In the place of the code you just removed, insert the following example code:

 STDMETHOD(Compute)(/*[in]*/ VARIANT* dataIn, /*[out]*/ VARIANT* dataOut)

 {

 int argCount = dataIn->parray->rgsabound->cElements;

 if (argCount != 3)

 {

 return DISP_E_BADPARAMCOUNT;

 }

 // Now, get the input arguments array

 VARIANT* argsArray = (VARIANT*)(dataIn->parray->pvData);

 // Second Step: Check Types of each arg..... Either VT_R8 (floating

 // point value), VT_BSTR (string value) for now...

 if (argsArray[0].vt != VT_R8) return E_INVALIDARG;

 if (argsArray[1].vt != VT_R8) return E_INVALIDARG;

 if (argsArray[2].vt != VT_R8) return E_INVALIDARG;

 // Third step: Get the actual values of each arg by extracting from

 // the array of input arguments

 register double p1 = argsArray[0].dblVal;

 register double p2 = argsArray[1].dblVal;

 register double p3 = argsArray[2].dblVal;

 // Final step: Perform your function's purpose and return the output

 // value. Because we're returning a number, the return type is VT_R8

 // (double) for now. Iads will convert if necessary..

 dataOut->vt = VT_R8;

 dataOut->dblVal = p1 + p2 + p3;

 return S_OK;

 }

12

When that step is complete, your code should like something this:

20) Now, build the solution. After the build is complete you‟ll notice that we have link errors.

This is a continuation of the Visual Studio bug as noted in steps 11 and 12. To correct the

errors, we‟ll need to add the newly created IadsFunction files into the StdAfx.cpp file.

In the Solution Explorer, click on the StdAfx.cpp file and add the following lines to the

source code:

#include “IadsFunction.h”

#include “IadsFunction_i.c”

13

21) At this point, you can begin modifying the code in the function to perform your specific

computation. For more background on how to pass arguments, check their types, and return

values, please refer to the SampleFunction projects included with this tutorial. Be sure to read

the comments in the supplied Compute functions.

If you have any further questions, you can search the Iads Google Group or post a question:

http://groups.google.com/group/iads

22) After you are done modifying the code, build the Solution. By building your Solution, the

new dll should be registered so you‟re ready to run and debug it now inside of Iads. The next

section in the tutorial describes how to debug the function.

If you want to use your function on another PC, you‟ll need to register the dll on that specific

PC. Please consult the web for documentation on “regsvr32.exe” and how to perform this

procedure.

If you want to add another function, simply repeat steps 6 through 8 and steps 18 and 19.

You can add as many functions to this project as you would like and they will all be

accessible through the same dll (i.e. MyFunction.FunctionName1, …,

MyFunction.FunctionNameN). If you wish to create an entirely new dll and set of functions,

you will need to repeat this entire tutorial using a unique project name.

14

3. Accessing your new function in IADS

1) Run IADS and login to a test Desktop.

2) Click the “Configuration” button on the IADS Dashboard in the lower right corner of the

screen.

3) After pressing the button, the Configuration Tool dialog will appear. In the left window pane,

click the “Data” folder and then finally the “ParameterDefaults” table. This is the location in

Iads where you will build a new derived parameter to test your function.

4) Ok, let‟s add a new derived parameter. For speed, we‟ll simply copy the last line in the table

and then replace our new values as needed. Select the last row in the table by pressing the

row button (in the picture, row #189). After the row is selected, press <Ctrl+C> to copy and

then follow that by a <Ctrl+V> to paste. You should now see a copy of the last line placed

into a new row. When you‟re done, the table should look something like this:

5) Click into the first column of the new row. As we go along, to proceed to the next cell simply

press the “Tab” key.

15

Leave the first column alone and simply press the Tab key to start editing the second column.

In the second column, type the name of your test parameter. Let‟s call it “TestMyFunction”.

Once you are done, press the Tab key as always. Now let‟s set the type of the parameter. Just

leave it “float” (i.e. 4 byte floating point number). In the future, if you‟re testing an Ascii

return value, you‟ll need to set this to Ascii.

At this point, keep pressing the Tab key until your arrive at the “DataSourceType” column.

Make sure that is set to “Derived”.

In the next column (DataSourceArgument) you‟ll write your derived equation. Now you will

use the knowledge learned from the discussion in the above tutorial regarding the project

name and function name. Enter the function name followed by the arguments:

 MyFunctionGroupName.FunctionName(5.0, 10.0, 30.0)

If you‟ve used the same names as the tutorial above, the function would we written like this:

 MyFunction.FunctionName(5.0, 10.0, 30.0)

If you want some variety to your test data, you can use something like this:

 MyFunctionGroupName.FunctionName(Rand()*5.0, Rand()*10.0, Rand()*30.0)

Or if you already have specific input parameters in mind, you can do something like this:

 MyFunctionGroupName.FunctionName(Param1, Param2, Param3)

In the next field (UpdateRate), type the sample rate that you desire to update your function. If

your equation is based off of other parameters, the sample rate will be automatically

computed and placed into this field when you Tab out of the cell.

Just for safe measure, press the Tab key until you get to the “FilterActive” column. Make

sure that it is set to “No”. We don‟t want a filter to be affecting our output at this time, or it

could lead to confusion.

After these steps are complete, press the “Save” toolbar icon in the Configuration Tool; your

new parameter will appear in the Parameter Tool.

16

6) To run the function, simply drop the parameter into any display. If you‟re not familiar with

building a test display and attaching a parameter, continue the tutorial for more instruction.

7) To build a test display, simply create an empty Analysis Window by dragging the icon from

your Display Builder tool and on to your Microsoft Windows desktop and dropping it. After

you‟ve dropped the Analysis Window, you have a choice to name the window.

8) Now simply repeat the process, but drop the “AlphaNumeric” display into the Analysis

Window (be sure drop the new display into the Analysis Window you‟ve just created and not

on to the Microsoft desktop). After the drop is complete, you should see the new display in

the Analysis Window. The AlphaNumeric is a very simple text display that will be easy to

view our equation output results.

9) Ok, now for the parameter attachment to the display. Click on the “Parameter Tool” button in

the Iads Dashboard (bottom right hand corner of screen). The Parameter Tool dialog will

appear. The Parameter Tool dialog contains a list of all your available parameters in the

configuration. Now all we need to do is find our parameter.

17

10) In the top text field (quick find box), start typing the parameter name. I used the name

“TestMyParameter”, so if you‟ve done the same then simply type “TestMy”. You‟ll notice

that the window at the bottom opens as soon as it finds your parameter. Keep typing until you

see the full parameter appears. Once it‟s visible, click on the parameter name and “drag” the

parameter into the display on the Analysis Window. As soon as you drop the parameter, data

should appear. This is the actual output of your function! See that wasn‟t too bad ;)

11) After your initial checkout is complete, you can move on to displays such as the Stripchart

that will show history and allow you to examine the data point by point for discrepancies.

Simply repeat the process above at step 8, but in this instance use the icon just under the

Analysis Window icon (first column second row). Make sure to save the configuration for

later.

12) If you want to debug the function using the Visual Studio 2005 debugger, continue to the

next section. This is the quickest way to ensure that your function is operating properly and

you are highly encourage to run through you function at least once using the debugger.

18

4. Debugging your new function in IADS

1) Bring up your Visual Studio custom function project, and place a break point in your

“Compute” method for testing.

2) Go to “Project->[ProjectName] Properties” drop down menu in Visual Studio, and in the

dialog that appears pick “Iads.exe” as your “Executable for debug session”. The Iads.exe file

is in your “C:\Program Files\Iads\ClientWorkstation” directory. Add “/local” to your

“Command Arguments” field. When you are ready to continue, press the OK button.

19

3) Build your Solution again for good measure and click on the “Go” command (or the F5 key).

Iads will start. When Iads starts, pick the configuration file you wish to use (possibly the

same configuration file as used in the last section) and click Open.

4) After Iads initializes, open up the Configuration Tool and create a derived parameter in the

ParameterDefaults table. If you need more background info on how to do this, consult the

last section. If you‟ve already created a derived parameter referencing your function, simply

click on your equation in the ParameterDefaults table.

Notice that when you “tab out” or finish the equation in the ParameterDefaults table, your

function will be called. At this point you can debug all of the argument types and make sure

you‟re getting the correct items. If you have an argument error and return an error code from

your function, notice that you‟ll get an error message inside of Iads and the equation text will

turn red in color. Once you‟ve checked out the arguments, you can remove the breakpoint

and debug the function with live data.

5) Add a display to the new Analysis Window (i.e. AlphaNumeric or Stripchart) as described in

the last section. If your parameter isn‟t already attached to a display, simply drag and drop

your newly built derived parameter into the display. Your break point should now hit in the

debugger. You can now step through your computational code if necessary.

Again, for more background on how to pass arguments, check their types, and return values,

please refer to the Sample Function project included with this tutorial. Be sure to read the

comments in the supplied Compute functions.

If you have any further questions, you can search the Iads Google Group or post a question:

http://groups.google.com/group/iads

http://groups.google.com/group/iads

20

5. Deploying your new function

When it comes time to deploy your new function to users on other PCs, you need to

consider a couple of issues. One issue is that your control may require some auxiliary dlls that

are not available on the other systems. If that occurs and the dlls are missing, the function may

not operate. To help minimize this possibility, you must always build your new function dll in

“Release” mode. You should never distribute a function dll that has been compiled under the

“Debug” mode. The debug mode uses libraries that will most certainly be missing on any

machine without Visual Studio installed. Beyond that, it is always best to „statically link‟ all the

runtime libraries. Also, since we have used ATL to build this function, we will need to statically

link the ATL library as well.

1) In Visual Studio, select the “Project->Properties” drop down menu. Make sure that the

“Configuration” drop down is set to “Release”. Under the “Configuration Properties-

>C/C++->Code Generation” tier, set the “Runtime Library” to “Multi-threaded (/MT)”.

21

2) Under the “Configuration Properties->General” tier, set the “Use of ATL” to “Static Link to

ATL”.

3) Once you‟ve made these changes to your project, you should rebuild your „solution‟. Make

sure once again that your current configuration is set to “Release” and then select the “Build-

>Rebuild Solution” drop down menu option. After this step is complete, your function dll

should be in your project “Release” folder. It should now be ready to deploy on another

system.

The function dll will need to be copied to the other PC and „registered‟. In order to register

the dll, you‟ll have to run the „regsvr32.exe‟ program. One easy way to accomplish this is to

double click on the dll in Windows Explorer. When asked what program to execute on the

dll, navigate to the Windows\System32 directory and choose the regsvr32.exe file. This

procedure may be different if the operating system is a 64 version. Please consult the online

documentation for specifics.

If the dll fails to register at this point, it most likely failed to statically link the needed dlls.

We can investigate which dlls are missing by using the “Dependency Walker” tool. The

Dependency Walker program is located within the Microsoft Visual Studio\Common\Tools

directory and is named “Depends.exe”. Copy Depends.exe from your development PC to the

target PC and run the program. From the File drop down menu select “Open” and choose

your function dll. Examine the module list in the bottom window pane. Any missing

dependent dlls should show up with a question mark. Search for those dll names on the net

and find out their purpose. It might help you narrow down what solution setting you have

missed. It‟s also possible that the missing dll is a private library that you are using, in which

case you‟ll need to either static link or copy that dll to the target machine as well.

22

6. Advanced Topics

6.1. Initialization and Execution of your Custom Function

In this section, we will review the steps taken during initialization and execution of your

custom function. It is important to be aware how Iads creates your function, as well as how it

calls your function during both the “initialization stage” and the “computation stage”. This will

affect how your Compute function is designed. For reference, you can refer to the

SampleFunction2.h file in the SampleFunctionVC project listed above.

First, let‟s examine the initialization stage of your function in general. Each and every

time a derived parameter is created that references your custom function, an instance of your

custom function object is created within the parameter‟s computational engine. When the

parameter requires data, this object is then used to produce results as described by your specific

custom code. As a general rule, your custom function object is created each time a user drops a

derived parameter referencing your function into a display, enables and IAP parameter

referencing your function, or edits an equation in the ParameterDefaults table referencing your

function.

Extending this logic, each “instance” of your function called from within Iads is a

completely independent unit of code, akin to a C++ object with member variables and

corresponding code. In essence, each derived parameter is running a fully independent object.

Obviously, this is necessary if your function maintains states such as “last value” or perhaps a

specific “matrix” input file that is required and chosen by the user via the function‟s input

arguments. In reality, your function can be called from many different derived parameters

simultaneously, each with their own unique set of input arguments, and possibly computing at

different times within the data. Because of this wide variety of possibilities, be aware that any

reference to “static” or “global” variables should be considered carefully. Global variables will

allow you to “share” information between multiple instances of your function, but you‟ll have to

be very careful about the timing considerations. If you do decide to venture down this path,

please do post your scenario to the Iads Google Group. In general avoid all use of global

variables and instead, use member variables within the class to hold any necessary state

information.

Now let‟s examine the initialization stage in more detail. The function name (i.e. ProgID)

within the derived equation is used to call the “CoCreateInstance” function in the Microsoft

COM libraries to create your object. Once your object is created within Iads, the

“FinalConstruct” method is called. In this method, you can put any initialization needed that is

independent of the input values to your function. This most likely would be limited to things

such as setting member variables to a known initial value.

23

For instance, say you were building a function allowed a user to specify a number of data

points to “buffer” before computing a results. Of course you‟ll need a member variable in the

class to hold this buffer. During the FinalConstruct, you would set your member variable buffer

pointer to NULL, but you would not allocate the memory. At this point in the initialization, you

don‟t have any of the argument values from the user‟s equation, thus you don‟t know how large

to allocate the buffer. In the next paragraph, we will discuss a way to solve this issue.

After your FinalConstruct function is called, Iads then calls the “Compute” function

within your object. The main purpose of this first call to your Compute function is to validate the

equation input variables. Understand that the custom function interface is flexible enough to

allow any number of input arguments, and each argument could be a different type (float, ascii,

blob, etc). It is at this exact time, the very first call to your Compute function, which you will

need to check the number and types of your input arguments. In fact, Iads will only listen to your

input argument error return codes on the first call to your function. Since we only want this code

to execute on the first call to the Compute function (and never again), a Boolean member

variable can be used to solve the problem. Simply add a member variable to your class and

initialize it to false in the FinalConstruct.

The secondary purpose of this first Compute function call is to give you an opportunity to

initialize any further variables (such as buffers, etc). Now, inside the Compute function you can

check the Boolean member variable‟s value, perform your argument checks and buffer

initialization, then set the member variable so the code is not triggered again. See the example

code snippet below or refer to the SimpleFunction2.

24

Now that the initialization stage of your function is complete, Iads will call your function

as data is required. This we will refer to as the “computation stage”. For each data value needed,

Iads will call your Compute function with all the necessary input data. Your custom function will

perform the processing and return a single value (the answer). This single answer will then be

returned to the derived parameter, buffered to limit redundant computation, and be provided to a

display (or other consumer).

The sample code in SampleFunction2.h will show you how to handle the various types of

input data (float, string, etc). It will also show you how to return these different types as your

custom function result. This will allow you to create custom functions to return data for almost

any situation. Again, if you need more help on this subject don‟t hesitate to post a question to the

Iads Google group. For more advanced topics, such as returning multiple values from your

custom function, please continue to the next section.

6.2. Returning Multiple Results from your Custom Function

One of the apparent limitations regarding the custom function technique described above

is that it seems unable to return multiple values. As we have learned in the previous section, each

input argument that is supplied in the derived equation is sent into the Compute function, the

custom code uses these input values to calculate the result, and then the single result is returned

to Iads. Suppose you had a function with 5 input arguments, but instead of only outputting a

single result, it outputs 5 results. This problem can be solved in a simple fairly manner.

25

When a function needs to output multiple answers in a single computation, we can simply

output an “array” of answers. This array type output is referred to in Iads as a BLOB (binary

large object). Once the array/blob is output from your custom function, it can then be returned as

a blob type parameter and the individual values in the array can be extracted using another

derived function called “Decom”. In summary, we simply return an array of answers (however

many required by the individual function), and then we can extract each value in its own unique

derived parameter using the Decom function. Now, let‟s go more into detail about this technique.

 First of all, we‟ll need to create an array to output our 5 results. Iads requires that this

data array be allocated using Microsoft‟s “SafeArray” mechanism, so we need to add a pointer of

type SAFEARRAY to our class. In this case, I used “mSA” as the member variable name.

Now we‟ll need to allocate the memory for this array. Carrying on the initialization discussion

from the last section, we‟ll perform the allocation in the Compute function within the “first time

only” portion of the function. To create the array, we‟ll simply call the SafeArrayCreateVector

function with the type VT_UI1 (byte) and the number of bytes required.

Now let‟s focus in on the actual “size in bytes” required by the allocation. To do this properly,

we have to describe in more detail the actual structure of the blob. In a blob, the first 4 bytes of

the array is a number specifying the total length of the blob (in bytes).

26

With this fact in mind, the equation to compute the total length of allocation needed is:

BlobSizeInBytes = sizeof(unsigned __int32) + TotalSizeOfDataPortionInBytes

Or

BlobSizeInBytes = 4 + TotalSizeOfDataPortionInBytes

Or in our example using 5 floating point numbers (4 bytes per number)

BlobSizeInBytes = sizeof(unsigned __int32) + sizeof(float) * 5

At this point, you should have the return blob/array allocated, so now let‟s examine how to

update our values in the array and return the results. First, we‟ll need to access the array pointer

within the SAFEARRAY. To do this, we simply call the SafeArrayAccessData function.

Second, let‟s set the blob size into the array. To do this, we simply cast the pointer returned from

the SafeArrayAccessData to a type unsigned __int32* and then set the value to the total number

of bytes in the blob. The total number of bytes in our example is 24 (4 bytes for the size field +

20 bytes for the 5 float values).

Now we can inject our computed results into the array. To do this, we need a pointer to the type

of variable we are going to store. We also need to make sure that the pointer starts at the proper

location in the array (past the blobSizeInBytes fieldwe just set above).

Instead of setting each value individually, you may want to simply call another function to

compute the results and pass in the output array pointer. You can then set the return values from

within that function and also keep all of your “calculation” code separate from the “interface”

code. This is a much cleaner approach overall.

27

After we are complete, this is how the blob layout will appear in memory (zero based index):

Once you have completed setting the return values into the array, it‟s now time to return the blob

to Iads. All we need to do here is call SafeArrayUnaccessData, set the dataOut->vt to

VT_ARRAY|VT_UI1 (i.e. an array of bytes), and assign the dataOut->parray variable to our

SafeArray member variable (mSA). To finish the function and return the value to Iads, we

simply return S_OK from the Compute function.

 At this point in time, we can now test the function. To proceed, we‟ll need to build a

derived equation to call your new function. We will also need to build derived functions to

extract the results from the blob. Compile your project and clean up any errors. When that is

done run Iads, and open up the Configuration Tool. Open the ParameterDefaults table and add a

parameter that calls your new function.

Notice in the figure above that the “ParamType” column is set to “blob”. This is an essential step

that you can‟t forget. If the ParamType is not set to “blob” for the derived parameter, you will

most likely get random return results or zero while attempting to extract the 5 embedded values.

Now, scroll over to the DataSourceType column, and set it to “Derived”. In the

DataSourceArguement column, type an equation that calls your new function. To debug the

equation, you might want to start with a set of known input values (constants). After completing

28

the equation, save your configuration. We can now actually test the raw output of the custom

function.

At this time, if you wish to see the raw output of your function you can drop your newly

created derived parameter into the “IadsBusMessageDisplays.BlobViewer” display. If you right

click on the ActiveX tab of the Display Builder in Iads, you can add the Blob Viewer to your

available displays list. Once that is complete, drag and drop the Blob Viewer display into an

AnalysisWindow. After the display appears, drop your new derived parameter into the display.

Notice that the Blob Viewer only shows the “payload” portion of your blob. The size field in the

blob has been stripped by Iads. This is to be expected, so don‟t be alarmed.

Each 4 bytes in the display is a single 32 bit float return value. Bytes 0 .. 3 show the first

return value, bytes 4..7 show the second, and so on. Note that since our blob has a total of 5

return values, there is an extra 4 byte field at the end containing all CD values. This is an artifact

of the display and not actually in the blob itself. This issue should be fixed in a new version of

Iads soon, so you can safely ignore it for now.

 Now that we know our blob is alive (no pun intended), we can continue on and actually

extract each individual value. When this step is complete, we can drop each individual return

value into its own display, or use these return values as an input into another derived equation.

After extraction, it will simply be “yet another derived parameter” and you can treat it like any

other parameter in the system.

29

To extract the individual values from the blob, we need to create one derived equation per

value. Each derived equation will use the “Decom” function to do the extraction work. Now,

return to the Configuration Tool and ParameterDefaults table to add 5 more derived parameters.

For each derived parameter, you must set the “ParamType” column to the type of the extracted

value. In our case, we packed 5 floating point values (32 bits each) into the blob, so the

ParamType must be set to “float”. If you skip this step you will again most likely get random

values or zero.

 At this point we‟re almost done. All we need to do is to write the extraction equations

using our blob parameter as the input. Scroll over to the DataSource column and set it to

“Derived”. In the DataSourceArguement column, add the following equation:

Decom(MyMultipleOutParam, 0, 4, 0, 31, 1, TRUE, FALSE)

The equation looks a little cryptic so, let‟s go over the Decom function arguments:

FuntionName: Decom
Arguments: 8
ArgumentList: InputDataParam, ByteOffset, NumBytes, StartBit, StopBit, DataTypeToReturn, Signed,
ReverseBytes

DataTypeToReturn -> { Integer=0, IEEEFloat=1, 1750Float=2, CharString=3, Array=4 }
Signed -> { False=0, True=1 } or just use TRUE/FALSE
ReverseBytes -> { False=0, True=1 }

Example Usage to extract a 4 byte IEEEFloat: Decom(MyIntParameter, 0, 4, 0, 31, 1, TRUE, FALSE)

Basically, the Decom function is an all purpose blob field extractor which can convert the

bit patterns extracted into any available type in Iads. With this in mind, let‟s focus back on

extracting our values.

Decom(MyMultipleOutParam, 0, 4, 0, 31, 1, TRUE, FALSE)

The first argument of the Decom function is the blob source parameter. In this case, we use the

derived parameter that produces packed answers from our custom function. This should be the

same parameter we dropped into the Blob Viewer above.

30

The second argument is the “starting byte offset” of the item we wish to extract within the blob.

The byte offset is simply the number of bytes from the start of the payload section of the blob

(remember to now ignore the 4 byte size field). Since we are defining the equation for the first

return value, the starting byte offset will be zero (all the offsets are zero based in this equation).

The third argument is the number of bytes to extract. In this case, the size of the return value is 4

(4 byte floating point number). If you had chosen to pack double precision floating point values

(8 bytes each), this argument would be set to 8.

The fourth argument is the “starting bit offset” of the data within bytes identified in arguments 2

and 3. In this case, we want all the bits so we simply specify bit 0. Likewise, the fifth argument is

the “ending bit offset” of the data identified in arguments 2 and 3. Again, we want the full 32

bits, so we‟ll specify 31.

The sixth argument is the actual “data type” that we want to return from the function. In this case

it‟s an IEEE float, so we‟ll specify 1. The seventh and eighth arguments are simply the signed

flag and whether we need to reverse the bytes before data type conversion. We‟ll specify TRUE

and FALSE respectively.

 Now that we understand the Decom function in general, let‟s simplify our task. Since all

of our return values are all of the exact same type and size, we can generalize our equations as

such:

Decom(MyMultipleOutParam, index*sizeof(returnValue), sizeof(returnValue), 0,

sizeof(returnValue)*8-1, DataType, TRUE, FALSE)

Or for our specific example

Decom(MyMultipleOutParam, index*4, 4, 0, 31, 1, TRUE, FALSE)

Where index goes from 0 to 4 (0 being our first item and 4 being our fifth item)

Using this generalization, we can easily write all of the functions needed:

ReturnValue1 => Decom(MyMultipleOutParam, 0, 4, 0, 31, 1, TRUE, FALSE)

ReturnValue2 => Decom(MyMultipleOutParam, 4, 4, 0, 31, 1, TRUE, FALSE)

ReturnValue3 => Decom(MyMultipleOutParam, 8, 4, 0, 31, 1, TRUE, FALSE)

ReturnValue4 => Decom(MyMultipleOutParam, 12, 4, 0, 31, 1, TRUE, FALSE)

ReturnValue5 => Decom(MyMultipleOutParam, 16, 4, 0, 31, 1, TRUE, FALSE)

31

When you are finished writing all of the extraction equations, your ParameterDefaults table

should look similar to the above figure. Make sure to save your configuration upon completion.

Now, all that is left is to drop the individual parameter into displays and test. If you have any

questions, please don‟t hesitate to post them to the IADS Google group.

