
 
 
 
 
 
 

 
 
 
 

SCRAMNet® Network 

Windows NT
®

 DLL Reference Guide 

Document No. C-T-ML-NTDLL###-A-0-A7 





FOREWORD 

The information in this document has been carefully checked and is believed to be accurate; however, no 
responsibility is assumed for inaccuracies.  Systran reserves the right to make changes without notice. 
 
Systran makes no warranty of any kind with regard to this printed material, including, but not limited to, 
the implied warranties of merchantability and fitness for a particular purpose. 
 
�Copyright 2000, Systran Corporation. All Rights Reserved.  
 
SCRAMNet® is a registered trademark of Systran Corporation. US Patent # 4,928,289 

  is a trademark of Systran, Corporation 
MS-DOS®, Windows® and Windows NT® are registered trademarks of Microsoft Corporation. 
UNIX  is a registered trademark of UNIX System Laboratories, Inc., a wholly owned subsidiary of Novell, Inc. 
 
References to products and/or services of other manufacturers as provided in this document do not 
constitute endorsement by Systran Corporation. 
 
 
Revised: February 16, 2000 
 
 

Systran Corporation 
4126 Linden Avenue 

Dayton, OH 45432-3068  USA 
(800) 252-5601 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Copyright 2000 i NT DLL REFERENCE GUIDE 
 

TABLE OF CONTENTS 
 
 
1. INTRODUCTION..................................................................................................................... 1-1 

1.1 How To Use This Manual ......................................................................................... 1-1 
1.1.1 Purpose .................................................................................................... 1-1 
1.1.2 Scope........................................................................................................ 1-1 
1.1.3 Style Conventions .................................................................................... 1-1 

1.2 Related Documentation ............................................................................................. 1-2 
1.3 Quality Assurance ..................................................................................................... 1-2 
1.4 Technical Support ..................................................................................................... 1-3 
1.5 Ordering Process ....................................................................................................... 1-3 

2. PRODUCT OVERVIEW .......................................................................................................... 2-1 
2.1 Overview................................................................................................................... 2-1 
2.2 Organization.............................................................................................................. 2-1 

2.2.1 Configuration Routines ............................................................................ 2-1 
2.2.2 Data Flow Control Routines .................................................................... 2-2 
2.2.3 Interrupt Routines .................................................................................... 2-2 
2.2.4 Memory Access Routines ........................................................................ 2-2 
2.2.5 DMA Routines ......................................................................................... 2-2 
2.2.6 General Routines...................................................................................... 2-2 

2.3 Related Documentation ............................................................................................. 2-3 
3. ACCESSING SCRAMNet HARDWARE ................................................................................ 3-1 

3.1 Mapping SCRAMNet to the Host System ................................................................ 3-1 
3.1.1 Unique Physical Interfaces....................................................................... 3-1 
3.1.2 Mapping SCRAMNet Hardware Registers .............................................. 3-1 
3.1.3 Mapping SCRAMNet Memory................................................................ 3-1 
3.1.4 Mapping Multiple SCRAMNet devices................................................... 3-1 

3.2 Accessing SCRAMNet Registers from the Host System .......................................... 3-2 
3.2.1 Physical Address Space Requirements .................................................... 3-2 
3.2.2 CSR Definition ........................................................................................ 3-2 

3.3 Accessing SCRAMNet Memory from the Host System ........................................... 3-2 
3.3.1 Array Style Access................................................................................... 3-3 
3.3.2 Function Oriented Memory Access ......................................................... 3-4 

3.4 Accessing the SCRAMNet Auxiliary Control Ram (ACR) ...................................... 3-4 
3.5 Host Platform Byte-Ordering Considerations ........................................................... 3-5 
3.6 Windows NT Programming ...................................................................................... 3-5 

4. INTERRUPTS........................................................................................................................... 4-1 
4.1 Overview................................................................................................................... 4-1 
4.2 SCRAMNet Hardware Interrupts.............................................................................. 4-1 
4.3 SCRAMNet Network Interrupt Messages................................................................. 4-1 
4.4 Selected Interrupts..................................................................................................... 4-2 

4.4.1 External Triggers ..................................................................................... 4-3 
4.5 Forced Interrupts ....................................................................................................... 4-4 
4.6 Interrupts on Errors ................................................................................................... 4-4 

5. INTERFACE ROUTINES ........................................................................................................ 5-1 
5.1 Description ................................................................................................................ 5-1 
5.2 Organization and Format........................................................................................... 5-1 
5.3 Configuration Routines ............................................................................................. 5-4 

5.3.1 get_scr_node_id() - Get SCRAMNet Node ID ........................................ 5-4 
5.3.2 get_scr_phy_csr_addr() - Get SCRAMNet CSR Address ....................... 5-5 
5.3.3 get_scr_phy_mem_addr() - Get SCRAMNet Memory Address .............. 5-6 



TABLE OF CONTENTS 

 Copyright 2000 ii NT DLL REFERENCE GUIDE 
 

5.3.4 get_scr_time_out() - Get Network Time-out ........................................... 5-7 
5.3.5 get_scr_user_mem_size() - Get Application Memory Size ..................... 5-8 
5.3.6 scr_acr_read() - READ ACR location ..................................................... 5-9 
5.3.7 scr_acr_write() - WRITE ACR location ................................................ 5-10 
5.3.8 scr_brd_select() - Change SCRAMNet Board (Multiple Board Support 
Only) ............................................................................................................... 5-11 
5.3.9 scr_board_status() - Display Board Status ............................................. 5-12 
5.3.10 scr_mem_mm() - Map Memory........................................................... 5-13 
5.3.11 scr_probe_mm() - Probe ...................................................................... 5-15 
5.3.12 scr_reg_mm() - Map Registers ............................................................ 5-17 
5.3.13 scr_reset_mm() - Reset FIFOs ............................................................. 5-19 
5.3.14 sp_cfg_read() - READ SCRAMNet Configuration File ...................... 5-21 
5.3.15 sp_plus_find() - Find Board Type........................................................ 5-22 
5.3.16 sp_scram_init() - Initialize SCRAMNet Mapping ............................... 5-23 
5.3.17 sw_cfg_fill() - Fills Values Defined in SCRAM_CFG Data Structure 5-24 
5.3.18 sw_get_int() - Get NT Interrupt Number ............................................. 5-26 
5.3.19 sw_int_connect() - Initialize NT Interrupts.......................................... 5-27 
5.3.20 sw_int_disconnect() - Terminate NT Interrupts................................... 5-28 
5.3.21 sw_mem_addr() - READ SCRAMNet Memory Address .................... 5-29 
5.3.22 sw_net_to() - READ Network Time-out.............................................. 5-30 
5.3.23 sw_reg_addr() - READ CSR Address.................................................. 5-31 
5.3.24 sw_set_size() - Set NT Memory Size................................................... 5-32 
5.3.25 sw_set_int() - Set NT Interrupt Number .............................................. 5-33 
5.3.26 sw_user_size() - READ NT Memory Size........................................... 5-34 

5.4 Data Flow Control Routines.................................................................................... 5-35 
5.4.1 GetScrTransactionType() - Get Byte Swapping Mode .......................... 5-36 
5.4.2 SetScrTransactionType() - Alter Byte-Access Order............................. 5-37 
5.4.3 scr_dfltr_mm() - Set Data Filter............................................................. 5-38 
5.4.4 scr_lnk_mm() - Link to Network ........................................................... 5-40 
5.4.5 scr_wml_mm() - Write-Me-Last............................................................ 5-42 
5.4.6 sp_gtm_mm() - Return current transaction mode (PCI/PMC Only) ...... 5-44 
5.4.7 sp_stm_mm() - Set transaction mode (PCI/PMC Only) ........................ 5-45 

5.5 Interrupt Routines.................................................................................................... 5-46 
5.5.1 scr_acr_mm() - ACR Enable.................................................................. 5-46 
5.5.2 scr_int_mm() - Set Interrupt Mode ........................................................ 5-47 

5.6 Memory Access Routines........................................................................................ 5-49 
5.6.1 get_base_mem() - Get Memory Pointer................................................. 5-49 
5.6.2 ReadSCRByte() - READ Byte of SCRAMNet Memory ....................... 5-50 
5.6.3 ReadSCRLong() - READ Longword of SCRAMNet Memory ............. 5-51 
5.6.4 ReadSCRWord() - READ Word of SCRAMNet Memory .................... 5-52 
5.6.5 WriteSCRByte() - WRITE Byte to SCRAMNet Memory..................... 5-53 
5.6.6 WriteSCRLong() - WRITE Longword to SCRAMNet Memory........... 5-54 
5.6.7 WriteSCRWord() - WRITE Word to SCRAMNet Memory.................. 5-55 

5.7 DMA Routines ........................................................................................................ 5-56 
5.7.1 Overview................................................................................................ 5-56 
5.7.2 scr_dma_read() - DMA READ from SCRAMNet Memory (PCI Only)5-56 
5.7.3 scr_dma_write() - DMA WRITE into SCRAMNet Memory (PCI Only)5-57 

5.8 General Routines..................................................................................................... 5-58 
5.8.1 scr_csr_read() - READ Registers........................................................... 5-58 
5.8.2 scr_csr_write() - WRITE Registers........................................................ 5-59 
5.8.3 scr_error_mm() - Network Error Display .............................................. 5-60 
5.8.4 scr_fifo_mm() - Reset FIFOs/READ Status .......................................... 5-62 
5.8.5 scr_fswin_mm() - Check for Fiber Optic Switch................................... 5-64 
5.8.6 scr_id_mm() - READ Node Identification............................................. 5-66 
5.8.7 scr_load_mm() - READ File to Load ACR / RAM ............................... 5-68 
5.8.8 scr_mclr_mm() - Clear ACR / RAM ..................................................... 5-70 
5.8.9 scr_read_int_fifo() - READ Interrupt FIFO CSRs................................. 5-72 



TABLE OF CONTENTS 

 Copyright 2000 iii NT DLL REFERENCE GUIDE 
 

5.8.10 scr_rw_mm() - READ / WRITE / Modify Registers ........................... 5-74 
5.8.11 scr_save_mm() - Save ACR or RAM Contents to File ........................ 5-76 
5.8.12 scr_smem_mm() - Set ACR / RAM to Pattern .................................... 5-78 
5.8.13 sp_bist_rd() - READ BIST Data.......................................................... 5-80 
5.8.14 sp_mem_size() - Get Hardware Memory Size..................................... 5-81 
5.8.15 sp_msg_life() - Pre-Age Network Messages ....................................... 5-82 
5.8.16 sp_net_to() - Set Network Time-out Value.......................................... 5-83 
5.8.17 sp_protocol() - Set Network Protocol .................................................. 5-84 
5.8.18 sp_rx_id() - Set Receive ID ................................................................. 5-85 
5.8.19 sp_set_cntr() - Set General Purpose Counter Mode............................. 5-86 
5.8.20 sp_set_sm_addr() - Set Physical Memory Address.............................. 5-87 
5.8.21 sp_set_vp() - Set Virtual Page Number ............................................... 5-88 
5.8.22 sp_txrx_id() - Set Transmit / Receive Node ID ................................... 5-89 

 
 
 

APPENDICES  

 
APPENDIX A - HEADER FILE  - SCRWIN.H System Macro Definition File ......................... A-1 
GLOSSARY............................................................................................................... GLOSSARY-1 
 
 
 
 
 

TABLES 
Table 4-1  ACR Functions............................................................................................................. 4-2 
Table 5-1  Interface Library Routine Information ......................................................................... 5-1 
Table 5-2  Interface Routine Directory.......................................................................................... 5-2 
Table 5-3  Byte Swapping Table ................................................................................................. 5-37 
 



TABLE OF CONTENTS 

 Copyright 2000 iv NT DLL REFERENCE GUIDE 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank 
 
 
 
 
 
 
 
 



 Copyright 2000 1-1 NT DLL REFERENCE GUIDE 
 

1. INTRODUCTION 

1.1 How To Use This Manual 

1.1.1 Purpose 
The SCRAMNet Windows NT Dynamic Link Library (DLL) software is a collection of 
basic functions designed to assist Windows NT application programmers with application 
development. This set of high-level routines provides all needed SCRAMNet hardware 
access.  

1.1.2 Scope 
This document: 

• Defines a set of software routines to assist in configuration and application 
program development for the SCRAMNet general-purpose node USING 
Windows NT DLL.  

• Describes the basic operations of the SCRAMNet Network Interface DLL 
routines for all of the supported host platforms using the SCRAMNet Network 
hardware.  

• Explains how to use the SCRAMNet DLL routines, assists in the general node 
setup; interrupt initialization, managing data-flow control, and accessing of 
general network-board information. 

This manual is intended for system and software developers who want to call the 
exported DLL routines in applications programming. The reader must understand the 
routine’s capability and have an understanding of the SCRAMNet product to use the 
routines provided with SCRAMNet effectively. 

1.1.3 Style Conventions 
• Called functions are italicized and are followed by a set of open and closed 

parentheses: OpenConnect() 
• File names and function parameters are bolded; for example, config.c 
• Directory names, and path names are italicized; for example, c:\winnt\system32. 
• Hexadecimal values in normal text are written with the word hex italicized and 

following the value with a font size one smaller than the context: FB001040 hex 
• Code and monitor screen displays of input and output are boxed and indented on 

a separate line.  
/* EXAMPLE */
new_ptr = (unsigned long huge*)old_ptr;

• Large samples of code are Courier font, at least one size less than context, and 
are usually on a separate page. 

 



INTRODUCTION 

 Copyright 2000 1-2 NT DLL REFERENCE GUIDE 
 

1.2 Related Documentation 
SCRAMNet Network (bus/platform) Hardware Interface Reference Manual (D-T-MR-
XXXXXXXX) - This manual describes the features, function, installation, and operation of 
each Systran network board.  

SCRAMNet Network Software Installation Manual for the (bus/platform) Using 
(Operating System)  (C-T-MI-XXXXXXXX) - This manual provides information 
concerning automatic and manual installation options for each product/platform and for a 
variety of operating systems. 

SCRAMNet Network Utilities Manual (C-T-MU-UTIL) - This manual describes the use 
of Systran hardware, diagnostic software, SCRAMNet+ EEPROM initialization software, 
and the SCRAMNet Monitor software. 

SCRAMNet Network Windows Utilities Manual (C-T-MU-WNUTIL) - This manual 
describes the memory monitor programs for Windows: scrmon and winmon. 

SCRAMNet Network Programmer’s Reference Guide (C-T-ML-PROGREF) – this 
manual describes the basic operations of the SCRAMNet Network Interface Library 
routines for all of the supported host platforms using the SCRAMNet Network hardware. 

SCRAMNet Network Windows NT Utilities Manual (C-T-MU-NTUTIL) - This manual 
describes the basic features of the SCRAMNet Windows NT utilities: network monitor, 
interrupt testing, diagnostics, and EEPROM initialization. 

SCRAMNet Network Windows DLL Reference Guide (C-T-ML-WINDLL) - This manual 
defines a set of user routines that are exported by the Windows Dynamic Link Library 
(DLL) to aid in application development.  

� 
NOTE:  “XXXXXXXX” in the document number is the product ID. (e.g., VME6U, 
PCI, PMC, EISA, etc.) 

1.3 Quality Assurance 
Systran Corporate policy is to provide our customers with the highest quality products 
and services. In addition to the physical product, the company provides documentation, 
sales and marketing support, hardware and software technical support, and timely product 
delivery. Our quality commitment begins with product concept, and continues after 
receipt of the purchased product. 

Systran’s Quality System conforms to the ISO 9001 international standard for quality 
systems. ISO 9001 is the model for quality assurance in design, development, production, 
installation and servicing. The ISO 9001 standard addresses all 20 clauses of the ISO 
quality system and is the most comprehensive of the conformance standards.  

Our Quality System addresses the following basic objectives: 
• Achieve, maintain and continually improve the quality of our products through 

established design, test, and production procedures. 
• Improve the quality of our operations to meet the needs of our customers, 

suppliers, and other stakeholders. 
• Provide our employees with the tools and overall work environment to fulfill, 

maintain, and improve product and service quality. 



INTRODUCTION 

 Copyright 2000 1-3 NT DLL REFERENCE GUIDE 
 

• Ensure our customer and other stakeholders that only the highest quality product 
or service will be delivered. 

The British Standards Institution (BSI), the world’s largest and most respected 
standardization authority, assessed Systran’s Quality System. BSI’s Quality Assurance 
division certified we meet or exceed all applicable international standards, and issued 
Certificate of Registration, number FM 31468, on May 16, 1995. The scope of Systran’s 
registration is: “Design, manufacture and service of high technology hardware and 
software computer communications products.” The registration is maintained under BSI 
QA’s bi-annual quality audit program. 

Customer feedback is integral to our quality and reliability program. We encourage 
customers to contact us with questions, suggestions, or comments regarding any of our 
products or services. We guarantee professional and quick responses to your questions, 
comments, or problems. 

1.4 Technical Support 
Technical documentation is provided with all of our products. This documentation 
describes the technology, its performance characteristics, and includes some typical 
applications. It also includes comprehensive support information, designed to answer any 
technical questions that might arise concerning the use of this product. We also publish 
and distribute technical briefs and application notes that cover a wide assortment of 
topics. Although we try to tailor the applications to real scenarios, not all possible 
circumstances are covered. 

Although we have attempted to make this document comprehensive, you may have 
specific problems or issues this document does not satisfactorily cover. Our goal is to 
offer a combination of products and services that provide complete, easy-to-use solutions 
for your application. 

If you have any technical or non-technical questions or comments (including software), 
contact us. Hours of operation are from 8:00 a.m. to 5:00 p.m. Eastern Standard/Daylight 
Time. 

• Phone: (937) 252-5601 or (800) 252-5601 
• E-mail: support@systran.com 
• Fax: (937) 252-1349 

1.5 Ordering Process 
To learn more about Systran products or to place an order, please use the following 
contact information. Hours of operation are from 8:00 a.m. to 5:00 p.m. Eastern 
Standard/Daylight Time. 

• Phone: (937) 252-5601 or (800) 252-5601 
• E-mail: info@systran.com  
• World Wide Web address: www.systran.com 

 
 
 



INTRODUCTION 

 Copyright 2000 1-4 NT DLL REFERENCE GUIDE 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Copyright 2000 2-1 NT DLL REFERENCE GUIDE
 

2. PRODUCT OVERVIEW 

2.1 Overview 
Using high-level routines to perform all hardware access to the SCRAMNet board means 
that a single application can work with different types of SCRAMNet hardware by 
simply using a different hardware-dependent DLL for each different type of SCRAMNet 
board. For example, develop an application with a SCRAMNet ISA board, and then run 
the same application on another system with a PCI board using the PCI version of the 
SCRAMNet DLL. 

2.2 Organization 
Any user-written, high-level language program following the steps necessary to call DLL 
functions can access these routines. The various functions are divided into four 
categories: Configuration, Data Flow, Memory Access and General. 

2.2.1 Configuration Routines 
get_scr_node_id() READ the current network node id 
get_scr_phy_csr_addr() Get physical base address of the SCRAMNet CSR registers 
get_scr_phy_mem_addr() Get physical base address of the SCRAMNet network 

memory 
get_scr_time_out() READ current network time out value 
get_scr_user_mem_size() READ current memory size for application to use 
scr_acr_read()  READ ACR Location 
scr_acr_write()  WRITE ACR Location 
scr_brd_select() Select a SCRAMNet board for control (Multiple board 

support only) 
scr_board_status() Create message windows with current SCRAMNet 

configuration data displayed in it 
scr_mem_mm() Maps the SCRAMNet physical memory  
scr_probe_mm() Validates SCRAMNet memory mapping information 
scr_reg_mm() Maps the SCRAMNet Control Status Registers 
scr_reset_mm() Reset SCRAMNet Node 
sp_cfg_read() READ config file 
sp_plus_find() Find Board Type 
sp_scram_init() READ config and map registers and memory  
sw_get_int() Get the current driver interrupt number 
sw_int_connect() Initialize interrupt Operations 
sw_int_disconnect() Terminate interrupt Operations 
sw_mem_addr() Return physical address of SCRAMNet memory 
sw_net_to() Return network time-out (as stored in registry) 
sw_reg_addr() Return physical address of CSRs 
sw_set_size() Set mapped memory size to use upon driver initialization 
sw_set_int() Set the interrupt number to use upon driver installation 
sw_user_size() Return user-specified memory size (as stored in registry) 



PRODUCT OVERVIEW 

 Copyright 2000 2-2 NT DLL REFERENCE GUIDE
 

2.2.2 Data Flow Control Routines 
GetScrTransactionType() Obtain method currently being used to alter the byte order 
scr_bswp_mm() Byte Swapper control switch 
scr_dfltr_mm() Data Filtering control switch 
scr_lnk_mm() SCRAMNet node linker switch 
scr_wml_mm() Host WRITE Disable switch 
SetScrTransactionType() Set byte-swapping method to be used 
sp_gtm_mm() Return current transaction mode (PCI/PMC Only) 
sp_stm_mm() Set transaction mode (PCI/PMC Only)  

2.2.3 Interrupt Routines 
scr_acr_mm() Auxiliary Control RAM control switch 
scr_int_mm() Interrupts Mode Select 

2.2.4 Memory Access Routines 
get_base_mem() Obtain SCRAMNet memory pointer 
ReadSCRByte() READ a byte from memory 
ReadSCRLong() READ a longword from memory 
ReadSCRWord() READ a word from memory 
WriteSCRByte() WRITE a byte to memory 
WriteSCRLong() WRITE a longword to memory 
WriteSCRWord() WRITE a word to memory 

2.2.5 DMA Routines 
scr_dma_read() DMA READ from SCRAMNet memory (PCI only) 
scr_dma_write() DMA WRITE into SCRAMNet memory (PCI only) 

2.2.6 General Routines 
scr_csr_read() READ CSR values 
scr_csr_write() WRITE values to CSRs 
scr_error_mm() Checks for and explains errors defined by CSR1 
scr_fifo_mm() Error Register Status Dump/FIFO Reset 
scr_fswin_mm() Check for fiber optic switch 
scr_id_mm() Node Identification information 
scr_load_mm() Configuration File Loader 
scr_mclr_mm() Memory or ACR clear control 
scr_read_int_fifo() READ interrupt FIFO CSRs 
scr_rw_mm() Control Status Register control 
scr_save_mm() Configuration File Saver  
scr_smem_mm() Memory or ACR modifier 
sp_bist_rd() READ  BIST data 
sp_mem_size() Get memory size of board 
sp_msg_life() Set Message Life 
sp_net_to() Set Network Timeout 
sp_protocol() Set Network Protocol 
sp_rx_id() Set Receiver ID 
sp_set_cntr() Set General Purpose Counter 
sp_set_sm_addr() Set Physical Memory Address 
sp_set_vp() Set Virtual Page 
sp_txrx_id() Set Transmitter and Receiver ID 



PRODUCT OVERVIEW 

 Copyright 2000 2-3 NT DLL REFERENCE GUIDE
 

2.3 Related Documentation 
SCRAMNet Network (bus/platform) Hardware Interface Reference Manual (D-T-

MR-XXXXXXXX) - This manual describes the features, function, installation, and 
operation of each Systran network board.  

SCRAMNet Network Software Installation Manual for the (bus/platform) Using 
(Operating System)  (C-T-MI-XXXXXXXX) - This manual provides information 
concerning automatic and manual installation options for each product/platform 
and for a variety of operating systems. 

SCRAMNet Network Programmer’s Reference Guide (C-T-MR-PROGREF) - This 
manual describes the basic operations of the SCRAMNet Network Interface 
Library routines for all of the supported host platforms using the SCRAMNet 
Network hardware. This manual is a guide to understanding the library routines 
and how they relate to the SCRAMNet Network control/status registers. 

SCRAMNet Network Utilities Manual (C-T-MU-UTIL) - This manual describes the 
use of Systran hardware, diagnostic software, SCRAMNet+ EEPROM 
initialization software, and the SCRAMNet Monitor software. 

SCRAMNet Network Windows Utilities Manual (C-T-MU-WNUTIL) - This manual 
describes the memory monitor programs for Windows: scrmon and winmon. 

SCRAMNet Network Windows NT Utilities Manual (C-T-MU-NTUTIL) - This 
manual describes the basic features of the SCRAMNet Windows NT utilities: 
network monitor, interrupt probe, diagnostics, and EEPROM initialization. 

SCRAMNet Network Windows DLL Reference Guide (C-T-ML-WINDLL) - This 
manual defines a set of user routines that are exported by the Windows Dynamic 
Link Library (DLL) to aid in application development.  

 
 

� 
NOTE:  “XXXXXXXX” in the document number is the product ID. (e.g., VME6U, 
PCI, PMC, EISA, etc.) 

 



PRODUCT OVERVIEW 

 Copyright 2000 2-4 NT DLL REFERENCE GUIDE
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank 
 
 
 
 
 
 
 
 
 
 
 



 Copyright 2000 3-1 NT DLL REFERENCE GUIDE 
 

3. ACCESSING SCRAMNET 
HARDWARE 

3.1 Mapping SCRAMNet to the Host System 
The first step in programming the SCRAMNet board is to map the hardware into the host 
system as a physical device. This process is specific to each host platform environment. 
The SCRAMNet Network Interface Library has routines that perform this physical 
mapping for each supported host environment. The SCRAMNet DLL calls will appear 
the same on all platforms, with respect to the user’s calling application. In reality, the 
code that performs the physical mapping is unique to the host platform, but the 
application program interface is the same on all the platforms. 

3.1.1 Unique Physical Interfaces 
The SCRAMNet node has three physical interfaces unique to the host system: memory, 
registers, and hardware interrupts. Each one of these interfaces must be recognized by the 
host system to operate SCRAMNet properly. There are several SCRAMNet Network 
Interface Library routines that perform these mapping functions. The SCRAMNet 
Network Interface Library contains the sp_scram_init() routine which provides all of the 
SCRAMNet mapping functions in one call. 

3.1.2 Mapping SCRAMNet Hardware Registers 
Mapping the SCRAMNet hardware registers is the first and most crucial operation to be 
performed. Access to register space varies across systems. After the SCRAMNet register 
space is mapped, by calling the sp_scram_init() routine, access to SCRAMNet registers is 
provided by a pair of functions that allow you to READ and WRITE these registers. 
READs and WRITEs to the registers should always be performed by calling the 
scr_csr_read() and scr_csr_write() functions. 

3.1.3 Mapping SCRAMNet Memory 
Once the registers are successfully mapped, the SCRAMNet memory must be mapped 
into the host system address space. The SCRAMNet on-board memory is not considered 
to be system memory by any means. The memory is only accessed as a physical memory 
device with memory mapped into an address space that does not coincide with the system 
memory address space. Mapping SCRAMNet memory is accomplished by calling the 
sp_scram_init() function.  

Upon successful completion of this function, a global pointer within the SCRAMNet 
DLL is initialized to the address of the first location of SCRAMNet memory. The value 
of this pointer can be obtained by the application program by calling the get_base_mem() 
function. 

3.1.4 Mapping Multiple SCRAMNet devices 
The SCRAMNet Windows NT device driver NTPCPC2, version A4 or later, supports 
multiple SCRAMNet devices. This permits running multiple nodes from a single user 



ACCESSING SCRAMNET HARDWARE 

 Copyright 2000 3-2 NT DLL REFERENCE GUIDE 
 

application. All SCRAMNet API function calls default to board zero. Board numbers are 
assigned in the order of scanning the PCI bus. To gain access to other boards on the same 
system, the API function scr_brd_select(i) switches control to board i, passed as the 
function argument. After calling this function, all SCRAMNet API calls are performed on 
board i. If board i is not found on the system, scr_brd_select(i) returns a ‘-1’ and control 
remains with the previously selected board. 

3.2 Accessing SCRAMNet Registers from the Host System 
The SCRAMNet hardware operation is defined and controlled by the on-board register 
set. SCRAMNet data is transferred between nodes via on-board memory. All of the 
SCRAMNet data transfer options are available to the application programmer by 
enabling and/or disabling specific bits in the control/status registers (CSR). The host 
platform environment, consisting of the bus being used (e.g., VME, EISA, SBus), the 
operating system (e.g., Windows, UNIX, DOS, VxWorks), and the compiler, define how 
access is provided to the SCRAMNet register space. The routines scr_csr_read() and 
scr_csr_write() provide access to these registers through software.  

These routines are coded to provide the proper interface required on each system 
supported. For example, on many PCI platforms it is necessary to map the SCRAMNet 
registers to one of the available PCI address spaces in which the system returns a pointer 
to a virtual address that is mapped directly to the physical location of the SCRAMNet 
registers. On a DOS EISA platform the registers are mapped to the I/O bus, which is 
provided solely for hardware device register access. The physical slot in which the board 
is inserted defines the beginning I/O address on this system. On a system such as this, 
register access is performed by a special IN and OUT machine instruction just for the I/O 
bus. 

3.2.1 Physical Address Space Requirements 
The SCRAMNet register set requires 64 bytes of physical address space on all of the 
various host systems, except PCI systems. In order to prevent prefetching from affecting 
the registers, the PCI version of the SCRAMNet Network distributes its registers along 
4 kilobytes of address space. This address space used cannot be overlapped with any 
other type of device being mapped into the same area. 

On most platforms there are 32 bytes of actual SCRAMNet registers, which are defined 
as 16-bit-wide registers. SCRAMNet registers can be read and written as 8-, 16- or 32-bit 
values. The library routines READ (scr_csr_read()) and WRITE (scr_csr_write()) the 
registers as 16-bit values.  

3.2.2 CSR Definition 
The definition and function of almost all of these registers is the same on all platforms. 
There may be subtle differences in these definitions on different platforms, but these 
differences only apply to the platform specific issues, such as the interrupt-vector 
registers. The specific definitions of each bit in each register are described in detail in the 
SCRAMNet Network (bus) Hardware Interface Reference Manual for the host platform.  

3.3 Accessing SCRAMNet Memory from the Host System 
Once the registers and memory are successfully mapped into the host system 
environment, it is possible to access the on-board SCRAMNet memory space. If 
configured correctly (through on-board registers, and the host system physical memory 
mapping requirements), the SCRAMNet on-board memory will be accessible via READs 



ACCESSING SCRAMNET HARDWARE 

 Copyright 2000 3-3 NT DLL REFERENCE GUIDE 
 

and WRITEs from the host. If inserted into the ring, any WRITEs to this memory will 
reflect the same data at the same location to each node in the ring.  If Virtual Paging is 
used, the location will be offset. For example, a 2 MB board can page to 0, 2, 4, or 6 MB 
address. 

3.3.1 Array Style Access 
After successfully mapping the SCRAMNet memory into the host system address space, 
the calling application can initialize a pointer to SCRAMNet memory by calling the 
get_base_mem() function. This function will return a pointer to an unsigned long (32-bit) 
integer. This pointer can then be cast to the desired data size (8-, 16- or 32-bit) to be used 
for accessing the SCRAMNet memory. Reading or writing the memory is equivalent to 
reading or writing an element in an array. For example, to WRITE and then READ a data 
value in the first longword of SCRAMNet memory, would look something like this in 
‘C’: 

/* EXAMPLE */
unsigned long int * Lmem_ptr;

Lmem_ptr = get_base_mem();
/* to write */
Lmem_ptr[0] = 0x12345678;
/* to read */
scram_value = Lmem_ptr[0];

After this statement executes, the value of ‘12345678’ hex will be present at offset 0 (or 
the Virtual Paging offset) on every on-line node in the network. Since the size of 
SCRAMNet memory is finite, it is very important to pay close attention to the limits of 
the indices so they do not extend beyond SCRAMNet memory. Different platforms will 
react differently to this situation. A PCI or ISA based PC-Clone may give a General 
Protection Fault or no indication at all, depending on the operating system environment. 
The limit of the index used is dependent on, first, the physical-memory size of the 
SCRAMNet hardware, and second, the data size of the pointer being used. 

/* EXAMPLE */
unsigned long int * Lmem_ptr;
unsigned short int * Smem_ptr;
unsigned char * Bmem_ptr;
/* SCRAMNet H/W size */
/* 128 KB = 0x20000 */
Bmem_ptr[0x20000] = 0x5a; /* ERROR */
Bmem_ptr[0x1FFFF] = 0x5a; /* OK */
Smem_ptr[0x1FFFF] = 0x1234; /* ERROR */
Smem_ptr[0xFFFE] = 0x1234; /* OK */
Lmem_ptr[0x8000] = 0x12345678; /* ERROR */
Lmem_ptr[0x7FFC] = 0x12345678; /* OK */

When using array style indexing with 16-bit compilers, compile the code using the huge-
memory model if addressing more than 64 KB of SCRAMNet memory. If it is necessary 
to compile the application using a different memory model, choose the memory access 
functions that work through the DLL (which compiles in the huge-memory model) for all 
direct-memory access. When mixing memory models between the application and the 
DLL, make sure that the SCRAMNet memory pointer(s) are typecast to a “huge” pointer 
type before they are accessed.   
 



ACCESSING SCRAMNET HARDWARE 

 Copyright 2000 3-4 NT DLL REFERENCE GUIDE 
 

/* EXAMPLE */
new_ptr = (unsigned long huge*)old_ptr;

 

3.3.2 Function Oriented Memory Access 
After successfully mapping the SCRAMNet memory into the host system address space, 
the calling application can access any SCRAMNet memory location by calling one of the 
following functions: ReadSCRLong(), ReadSCRWord(), ReadSCRByte(), 
WriteSCRLong(), WriteSCRWord(), or WriteSCRByte().  

For example, to WRITE and then READ a data value in the first longword of 
SCRAMNet memory, would look something like this in ‘C’: 

/* EXAMPLE */
unsigned long int lValue;

LValue = 0x12345678;
WriteSCRLong(0,lValue);
ReadSCRLong(0,&lValue);

After this statement executes, the value of ‘12345678’ hex will be present at offset 0 (or 
the Virtual Paging offset) on every on-line node in the network. And as with array access, 
ensure the memory index used does not exceed the memory size.

3.4 Accessing the SCRAMNet Auxiliary Control Ram (ACR) 
The SCRAMNet Auxiliary Control Ram (ACR) can be described as a “Shadow RAM” 
over the normal SCRAMNet shared memory. SCRAMNet memory is organized as 32-bit 
longwords. At each SCRAMNet longword location there is one (8-bit) byte of ACR. The 
other three bytes of the same longword are non-existent memory. The ACR and normal 
shared memory can never be accessed at the same time. The key to accessing the ACR is 
CSR0[4]. When this bit is set, ACR access is enabled, and normal shared memory is 
inaccessible from the host system, but is still updated by network traffic. The ACR byte at 
each SCRAMNet longword location is usually located in the least significant byte 
location. The other three bytes in the same longword cannot be modified. This is one 
method of determining the byte location of the ACR byte if there is any question about its 
location within each longword. 

Using the ACR is only necessary if configuring the SCRAMNet node for interrupts, 
external triggers, or High Performance mode (HIPRO). It is recommended that ACR 
setup be performed during initialization of the node at startup. Before enabling the ACR, 
clear CSR2 to zero for SCRAMNet Classic, to disable byte swapping. There is one ACR 
byte for every longword in SCRAMNet shared memory. Setting the bits in each ACR 
location will define actions for that shared-memory longword location only. After 
initializing the desired ACR bytes, clear CSR0[4] returning memory access back to 
normal SCRAMNet shared memory. When this is done, continue the normal node 
initialization for network operation.  

EXAMPLE: 
A given configuration calls for nodes 2 and 3 to generate hardware interrupts whenever node 1 
performs a WRITE to the first SCRAMNet longword location. Node 1 enables the ACR and sets 
bit 1 of the ACR byte (Transmit Interrupt Enable) for SCRAMNet longword 0. After clearing 
ACR-enable on node 1, enable ACR-enable on nodes 2 and 3. Each of these nodes set Receive 
Interrupt Enable ACR[0] for SCRAMNet longword 0.  



ACCESSING SCRAMNET HARDWARE 

 Copyright 2000 3-5 NT DLL REFERENCE GUIDE 
 

After clearing ACR enable on nodes 2 and 3, and initializing both nodes for host interrupt enable, 
a WRITE to longword 0 on node 1 generates a network interrupt message. When this message 
arrives at nodes 2 and 3, longword 0 will be updated, each node will add the address of the 
interrupting longword location into the Receiver (Interrupt) FIFO and generate a hardware 
interrupt to the host platform of each node.  

If a node 4 was also on the ring, and the Receive Interrupt Enable ACR bit was not set on this 
node, there would only be an update to the data in longword 0, and no hardware interrupt or FIFO 
entry.  

3.5 Host Platform Byte-Ordering Considerations 
(SCRAMNet-LX and SCRAMNet+ only) By default, the SCRAMNet hardware follows 
the byte-ordering format found on almost all VME based processors, which is considered 
to be “Big-Endian” byte order. This means that all VME SCRAMNet nodes are Big-
Endian byte order and do not have any byte swapping facility on-board. SCRAMNet 
nodes based on backplanes that may have “Little-Endian” byte ordering (i.e., PCs), will 
have some facility on-board to allow switching between Big-Endian and Little-Endian. 

With respect to SCRAMNet network operation, if a ring is configured with only Little-
Endian nodes, it will not be necessary to configure any of the nodes to perform byte-
swapping. The data format will be consistent around the ring.  

� 
NOTE:  If a node utilizing the Big-Endian data format, by default, is introduced into 
the ring, then it will be necessary to configure all of the Little-Endian nodes to 
perform byte-swapping from Little-Endian to Big-Endian format. 

3.6 Windows NT Programming 

 

CAUTION:  It is critical to remember certain requirements when programming in 
the Windows NT environment, so please read these paragraphs! Source files WILL 
NOT compile and execute if these directions are not followed. 

First, unlike DOS or Unix implementations, the Windows NT SCRAMNet API is 
implemented in a dynamic link library (DLL), which must be included in the project 
when compiling source code. The setup program copies a file called ntpciscr.lib into the 
SCRAMNet directory (selected during setup). Include this file in the project build /make 
file (compiler-dependent). Receipt of errors such as “external routine not found” during 
the link phase of your compilation, indicates the library file has not been properly 
included. 

Second, much of the original API code was ported directly to Windows NT, but the 
prototypes for DOS/Unix are different than those for Windows NT. The following terms 
MUST be defined globally to ensure the proper prototypes and #include directives are 
compiled: 

_WINDOWS 
_WINNT 

Defining them in the main program source file will most likely NOT be sufficient. Edit 
your project options/parameters (compiler-dependent) and #define these terms globally. 
Receipt of errors such as “redefined prototype” or “xyz not defined”, indicates these 
terms have not been correctly defined. 



ACCESSING SCRAMNET HARDWARE 

 Copyright 2000 3-6 NT DLL REFERENCE GUIDE 
 

Third, to implement the SCRAMNet API faithfully, all references to multiple 
SCRAMNet cards in a single computer have been removed. Therefore, if existing drivers 
and code is based on the Windows 3.11/Windows 95 SCRAMNet specifications, source 
code must be modified to remove the additional parameter referring to the card number. 

Save ntpciscr.dll in a standard DLL location, such as %windir\system32 (typically 
c:\winnt\system32 for Windows NT 4.0 or c:\winnt35\system32 for Windows NT 3.51) or 
the current directory for the executable file. 

The pnpscr.dll and pnpscr.lib are the newest versions of the SCRAMNet library and 
DLL files, and are compiled with the _std call (ntpciscr.dll is compiled with the _cdecl). 
The ntpciscr.lib and ntpciscr.dll are older versions of the library and DLL files, and are 
retained to maintain backward compatibility with previous versions of the Windows NT 
software.  

Although the Windows NT software package was specifically designed for use with 
C/C++ compilers, it can also be used with Visual Basic. To use a Visual Basic compiler 
with the SCRAMNet API you must use pnpscr.dll. This software package was tested 
with Microsoft Visual Basic 6.0.8169. 
 
 
 
 



 Copyright 2000 4-1 NT DLL REFERENCE GUIDE 
 

4. INTERRUPTS 

4.1 Overview 
When discussing SCRAMNet interrupts, it is important to be aware of the difference 
between hardware interrupts to the host platform and SCRAMNet Network interrupt 
messages. For the purpose of this discussion, the data transferred around a SCRAMNet 
network will be referred to as a “message”. Each SCRAMNet node generates messages 
around the ring that are considered either “data” or “interrupt” messages. The type of 
message generated is under user-application control. Configuring a node to transfer 
interrupt messages does not necessarily mean that each interrupt message will generate a 
hardware interrupt to the host platform. This is optionally controlled by the user’s 
application. All of the different methods of generating SCRAMNet interrupts, described 
in section 4.3, may optionally be configured to generate a hardware interrupt to the host 
platform. 

4.2 SCRAMNet Hardware Interrupts 
A hardware interrupt is an asynchronous signal, normally generated by a peripheral on 
the occurrence of an external or internal event, which forces the processor to suspend its 
normal sequence of operations. The processor control is then transferred to a special 
routine in memory that services the acknowledged interrupt. In windows programming 
this routine is typically incorporated into a device driver. 

In an environment where more than one source of an interrupt is possible, device drivers 
must be implemented to deal with every different kind of service required. This is 
typically accomplished with an interrupt-priority scheme. Interrupts that are to be 
processed upon receipt would need to be assigned a higher priority than those that can be 
processed later. For example, in a READ-WRITE operation, a WRITE operation would 
require a higher priority than a READ to ensure up-to-date READ requests. 

4.3 SCRAMNet Network Interrupt Messages 
Each SCRAMNet network board on the network ring can be uniquely configured to 
receive and/or transmit interrupts. SCRAMNet interrupts are generated in two ways:  

• A data WRITE to a shared-memory location on the network 
• SCRAMNet network errors detected on the local node.  

Data-WRITE interrupts on the network can be either “selected” or “forced”. These terms 
are described in sections 4.4 and 4.5. 

Each SCRAMNet host can be “armed” to process interrupts. If the host is to process 
interrupts, set Interrupts Armed CSR1[14]. Then, upon receipt of either a selected or 
forced interrupt, CSR5 will contain the most significant seven bits of the 23-bit interrupt 
address, and the remaining 16 bits are placed in CSR4. Each word read from CSR4 and 
CSR5 will contain the SCRAMNet memory address of the data received from the 
network interrupt; a byte address from the beginning of SCRAMNet memory. 



INTERRUPTS 

 Copyright 2000 4-2 NT DLL REFERENCE GUIDE 
 

Every interrupt address received, including those received while another interrupt is 
being processed, is placed on the Interrupt FIFO stack. 

The device driver uses this information to process the interrupt (the process defined for 
each interrupt type is user-dependent). Upon completion, the host processor READs the 
CSRs to get the next interrupt memory address until the Interrupt FIFO Not Empty 
CSR5[15] is zero, indicating that all the interrupts received thus far have been serviced. 
To re-enable interrupts, Interrupts Armed CSR1[14] must be set by writing any value to 
CSR1. Sample Interrupt Service Routine algorithms can be found in the SCRAMNet 
Hardware Reference Manual for the targeted host platform. 

� 
NOTE:  The Interrupt FIFO can hold up to 1,024 interrupt addresses. This means 
the count of unprocessed interrupts following 1024 is not maintained, however the 
related data is not lost. After 1,024, the data related to an unprocessed interrupt is 
written to memory and the 1,024th Interrupt Address is overwritten in the Interrupt 
FIFO. 

Handling hardware interrupts from the SCRAMNet Node is specific to each host 
platform supporting SCRAMNet. The SCRAMNet CSRs are defined the same across all 
backplanes except for the following registers: CSR6, CSR7, CSR10, CSR11, CSR14, 
CSR15 and CSR16. These registers are used for host-platform specific functions such as 
hardware interrupts.  

EXAMPLES 
On a VME SCRAMNet node, CSR6 is loaded with a VME Interrupt Vector for handling 
network interrupts. CSR7 is loaded with a VME Interrupt Vector for handling error 
interrupts. On an SBus SCRAMNet node CSR6 is not used. CSR7 and CSR15 are used 
for all of the SBus hardware interrupt configuration values. 

4.4 Selected Interrupts 
The selected interrupt technique allows the options to either receive and/or transmit 
interrupts at a particular SCRAMNet shared memory location. This is accomplished with 
the proper configuration of the ACR[0] and ACR[1], respectively. 

Table 4-1  ACR Functions 

Bit Function 

0 Receive Interrupt Enable (RIE) 
1 Transmit Interrupt Enable (TIE) 
2 External Trigger 1 (Host READ/WRITE) 
3 External Trigger 2 (Network WRITE) 
4 HIPRO Location Enable 
5 Reserved 
6 Reserved 
7 Reserved 

 
Setting Receive Interrupt Enable ACR[0] generates an interrupt to the host for network 
interrupt data received at a particular shared-memory location. Setting Transmit-Interrupt 
Enable ACR[1] generates an interrupt to the network for a host WRITE to a particular 



INTERRUPTS 

 Copyright 2000 4-3 NT DLL REFERENCE GUIDE 
 

shared-memory location. To assert the two previous interrupt mode bits, you would have 
to WRITE to the ACR.  

Use the following steps to WRITE to the ACR: 
• WRITE a ‘0000’ hex to CSR2 to clear the register 
• WRITE a ‘0010’ hex into CSR0 to enable the ACR (CSR0[4]) 
• Depending on the required interrupt cycle, either WRITE a ‘01’ hex for receive or 

‘02’ hex for a transmit.  

Clearing CSR2 is required to disable various features while accessing the ACR. It is 
important to follow the sequence, that is, clear CSR2 first, and then enable the ACR-
enable bit in CSR0. 

Once the Auxiliary Control RAM is enabled, the least significant byte of every shared-
memory location responds as an ACR byte. Therefore, every shared-memory location has 
an ACR associated with it to transmit and/or receive interrupts. Clear ACR-Enable 
CSR0[4] after it is configured, so that every memory location returns to its normal setup. 
This does not affect any ACR interrupt locations.  

Setting Override Receive Interrupt Enable CSR0[6] and Override Transmit Interrupt 
Enable CSR0[9], overrides any configuration set through the ACR regardless of the 
status of the ACR Interrupt bits. Setting these two bits forces every shared-memory 
location to behave as though the ACR bit is set, whether or not it is actually set. Also, 
with data filtering enabled, interrupts are still generated at memory locations where data 
values have not actually changed. 

� 
NOTE:  The host processor has to be armed in order to generate hardware 
interrupts; otherwise no interrupt sequences are possible. Set Interrupts Armed  
CSR1[14], set Host Interrupt Enable (HIE) CSR0[3] and Interrupt Memory Mask 
Match (IMME) CSR0[5]. This is equivalent to writing ‘0028’ hex into CSR0. If 
Interrupts Armed is zero, then the host will receive no interrupts. To return to an 
active status, re-enable interrupts by rewriting a ‘0028’ hex into CSR0. 

With selected interrupts, specific shared-memory locations can be set to transmit and/or 
receive interrupts. If Interrupts Armed CSR1[14] set to ‘1’, a selected interrupt sequence 
is generated by transmitting data to any interrupt memory location.  

Therefore, any processor on the network with a specific memory location set to receive 
interrupts, will receive an interrupt message from the network if data was transmitted to 
that specific memory location by any other processor on the same network.  

While processing an interrupt, Interrupts Armed CSR1[14] goes low. However, receipt of 
a network interrupt while the previous interrupt is being processed would result in the 
shared-memory location being updated (data WRITE), and the interrupt addresses added 
to the Interrupt FIFO stack.  

4.4.1 External Triggers 
The selected-interrupt technique also provides two external trigger mechanisms through 
the ACR. ACR[2] controls trigger 1 (ET1) and a hard pulse is generated at the end of host 
READ/WRITE cycle. ACR[3] controls trigger 2 (ET2) which generates a hard pulse at 
the end of a network WRITE cycle. The enabling procedure is similar to enabling the 
interrupt bits, except that to trigger ET1, WRITE a ‘04’ hex in the ACR and a ‘08’ hex to 
trigger ET2.  



INTERRUPTS 

 Copyright 2000 4-4 NT DLL REFERENCE GUIDE 
 

(SCRAMNet Classic only) Three other external triggers are constantly available and do 
not require any ACR designations. Trigger 3 generates a hard pulse when a network 
message is received with the Control Slot bit set. Trigger 4 generates a hard pulse when a 
network message is received with the interrupt bit set. Trigger 5 generates a hard pulse 
when the host sends a message to the network with the interrupt bit set. 

4.5 Forced Interrupts 
The forced-interrupt technique operates in the same manner as the selected-interrupt 
technique, except that the forced-interrupt technique automatically sets up all of the 
SCRAMNet shared-memory locations to either receive and/or transmit interrupts. With 
this technique, there is no particular address “selection” option for the user. External 
triggers are disabled when using the forced technique. 

4.6 Interrupts on Errors 
Interrupts can also be generated by network errors. This is accomplished by enabling 
Interrupts on Errors CSR0[7] by writing a ‘0080’ hex into CSR0. Remember the host has 
to be armed to process interrupts. This means enabling interrupts by writing a ‘0028’ hex 
into CSR0 that sets Host Interrupt Enable and Interrupt On Memory Mask Match Enable. 
The various network errors are signaled in CSR1 and a mask for these errors can be 
defined in CSR9. See the SCRAMNet Network (bus) Hardware Interface Reference for 
details on these error bits. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Copyright 2000 5-1 NT DLL REFERENCE GUIDE 
 

5. INTERFACE ROUTINES 

5.1 Description 
Routines residing in the SCRAMNet Interface Library can be accessed from any user-
written program. All the subroutines provided in the library are classified into four 
general categories. Similar routines are grouped together. The purpose of this section is to 
acquaint the user with the SCRAMNet Interface Library routines and the logic behind the 
SCRAMNet Network Board. 

5.2 Organization and Format 
The following types of information are used to describe each routine: 

Table 5-1  Interface Library Routine Information 

NAME: The routine name appears at the top of the first page.  
SYNOPSIS: The routine prototype and external variables changed by the 

subroutine, and the necessary include files. 
SPECIFICATION: If present, relates the information to particular computer 

systems. 
DESCRIPTION: Provides information about specific actions taken by the 

routine. 
ARGUMENTS: Describes the parameters passed to the function. 
RETURNS: Describes the values the function returns. 
ERROR: If present, contains information on the success or failure of the 

routine during its execution; with appropriate error messages. 
NOTE: Contains any additional information that is required of the 

routine, for example: all the additional data types required and 
their location. 

EXAMPLE Highlights the function only, the rest has been minimized. Each 
example may use supporting functions which are assumed to 
work correctly. 

 



INTERFACE ROUTINES 

 Copyright 2000 5-2 NT DLL REFERENCE GUIDE 
 

Table 5-2  Interface Routine Directory 

Name Type Page Function 

get_base_mem() Memory 
Access 

5-49 Obtain SCRAMNet memory pointer 

get_scr_node_id() Configuration 5-4 Get SCRAMNet node ID.  
get_scr_phy_csr_addr() Configuration 5-5 Get physical base address of SCRAMNet CSR registers. 
get_scr_phy_mem_addr() Configuration 5-6 Get physical base address of SCRAMNet network 

memory. 
get_scr_time_out() Configuration 5-7 Get current network time-out value. 
get_scr_user_mem_size() Configuration 5-8 Get current memory size of board. 
GetScrTransactionType() Data Flow 5-36 Detect byte swapping method used. 
ReadSCRByte() Memory 

Access 
5-50 READ a byte from memory. 

ReadSCRLong() Memory 
Access 

5-51 READ a longword from memory. 

ReadSCRWord() Memory 
Access 

5-52 READ a word from memory. 

scr_acr_mm() Interrupt 5-46 Auxiliary Control RAM control switch 
scr_acr_read() Configuration 5-9 READ ACR location 
scr_acr_write() Configuration 5-10 WRITE ACR location 
scr_brd_select() Configuration 5-11 Change SCRAMNet  Board (Multiple Board Support Only) 
scr_board_status() Configuration 5-12 Create message window with current SCRAMNet config 

data. 
scr_csr_read() General 5-58 READ CSR values 
scr_csr_write() General 5-59 WRITE values to CSRs 
scr_dma_read() DMA  5-56 SCRAMNet+ DMA READ from SCRAMNet memory into 

user memory buffer 
scr_dma_write() DMA 5-57 SCRAMNet+ DMA WRITE from user memory buffer into 

SCRAMNet memory 
scr_dfltr_mm() Data Flow 5-38 Data Filtering control switch 
scr_error_mm() General 5-60 Checks for and explains errors defined by CSR1 
scr_fifo_mm() General 5-62 Error Register status dump/FIFO reset 
scr_fswin_mm() General 5-64 Check for fiber optic switch 
scr_id_mm() General 5-66 Node Identification information 
scr_int_mm() Interrupt 5-47 Interrupts mode select 
scr_lnk_mm() Data Flow 5-40 SCRAMNet node linker switch 
scr_load_mm() General 5-68 Configuration file loader 
scr_mclr_mm() General 5-70 Memory or ACR clear control 
scr_mem_mm() Configuration 5-13 Maps the SCRAMNet physical memory 
scr_probe_mm() Configuration 5-15 Validates SCRAMNet memory mapping information 
scr_read_int_fifo() General 5-72 READ interrupt FIFO CSRs 
scr_reg_mm() Configuration 5-17 Maps the SCRAMNet control status registers 
scr_reset_mm() Configuration 5-19 Reset SCRAMNet node 
scr_rw_mm() General 5-74 Control Status register control 
scr_save_mm() General 5-76 Configuration file saver 



INTERFACE ROUTINES 

 Copyright 2000 5-3 NT DLL REFERENCE GUIDE 
 

Name Type Page Function 

scr_smem_mm() General 5-78 Memory or ACR modifier 
scr_wml_mm() Data Flow 5-42 Host Write disable switch 
SetScrTransactionType() Data Flow 5-37 Set byte swapping method to be used. 
sp_bist_rd() General 5-80 READ  BIST data. 
sp_cfg_read() Configuration 5-21 READ Config File 
sp_gtm_mm() Data Flow 5-44 Return current transaction mode (PCI/PMC Only) 
sp_mem_size() General 5-81 Get memory size of board 
sp_msg_life() General 5-82 Set message life 
sp_net_to() General 5-83 Set network time-out 
sp_plus_find() Configuration 5-22 Detect board type 
sp_protocol() General 5-84 Set network protocol 
sp_rx_id() General 5-85 Set receiver ID 
sp_scram_init() Configuration 5-23 READ config and map registers and memory 
sp_set_cntr() General 5-86 Set General Purpose Counter/Timer 
sp_set_sm_addr() General 5-87 Set physical memory address 
sp_set_vp() General 5-88 Set virtual page 
sp_stm_mm() Data Flow 5-45 Set transaction mode (PCI/PMC Only) 
sp_txrx_id() General 5-89 Set transmitter and receiver ID 
sw_cfg_fill() Configuration 5-24 Fills SCRAM_CFG data structure 
sw_get_int() Configuration 5-26 Get the current driver interrupt number. 
sw_int_connect() Configuration 5-27 Terminate interrupt operations. 
sw_int_disconnect() Configuration 5-28 Initialize interrupt operations. 
sw_mem_addr() Configuration 5-29 Get physical address of SCRAMNet memory. 
sw_net_to() Configuration 5-30 Get network time-out (as stored in registry). 
sw_reg_addr() Configuration 5-31 Get physical address of CSRs. 
sw_set_size() Configuration 5-32 Set mapped memory size to use upon driver initialization. 
sw_set_int() Configuration 5-33 Set the interrupt number to use upon driver installation. 
sw_user_size() Configuration 5-34 Get user-specified memory size (as stored in registry). 
WriteSCRByte() Memory 

Access 
5-53 WRITE a byte to memory. 

WriteSCRLong() Memory 
Access 

5-54 WRITE a longword to memory. 

WriteSCRWord() Memory 
Access 

5-55 WRITE a word to memory. 



INTERFACE ROUTINES 

 Copyright 2000 5-4 NT DLL REFERENCE GUIDE 
 

5.3 Configuration Routines 

5.3.1 get_scr_node_id() - Get SCRAMNet Node ID 

SYNOPSIS 
#include <scr.h>
BYTE get_scr_node_id( void )

DESCRIPTION 
This routine returns the node id assigned to the SCRAMNet card. 

ARGUMENTS 
None. 

RETURNS 
Returns a BYTE value set equal to the node id. Valid node id’s are in the range  
0 - 255. 

ERROR 
get_scr_node_id() will fail if: 

- sp_scram_init() has not been called to initialize the card. 



INTERFACE ROUTINES 

 Copyright 2000 5-5 NT DLL REFERENCE GUIDE 
 

5.3.2 get_scr_phy_csr_addr() - Get SCRAMNet CSR Address 

SYNOPSIS 
#include <scr.h>
DWORD get_scr_phy_csr_addr( void )

DESCRIPTION 
This routine returns the physical-memory address at which the SCRAMNet 
Control/Status Registers (CSR) are located.  

ARGUMENTS 
None. 

RETURNS 
DWORD value set equal to the base address at which the SCRAMNet CSRs are 
located. 

ERROR 
get_scr_phy_csr_addr() will fail if: 

- sp_scram_init() has not been called to initialize the card. 



INTERFACE ROUTINES 

 Copyright 2000 5-6 NT DLL REFERENCE GUIDE 
 

5.3.3 get_scr_phy_mem_addr() - Get SCRAMNet Memory Address 

SYNOPSIS 
#include <scr.h>
DWORD get_scr_phy_mem_addr( void )

DESCRIPTION 
This routine returns the physical-memory address at which the SCRAMNet memory 
is located.  

ARGUMENTS 
None. 

RETURNS 
Returns a DWORD value set equal to the base address at which the SCRAMNet 
memory is located. 

ERROR 
get_scr_phy_mem_addr() will fail if: 

- sp_scram_init() has not been called to initialize the card. 



INTERFACE ROUTINES 

 Copyright 2000 5-7 NT DLL REFERENCE GUIDE 
 

5.3.4 get_scr_time_out() - Get Network Time-out 

SYNOPSIS 
#include <scr.h>
BYTE get_scr_time_out( void )

DESCRIPTION 
This routine returns the SCRAMNet Network node time-out value. 

ARGUMENTS 
None. 

RETURNS 
Returns a BYTE value set equal to the time-out value. Valid values are in the range  
0 - 255. 

ERROR 
get_scr_time_out() will fail if: 

- sp_scram_init() has not been called to initialize the card. 
 



INTERFACE ROUTINES 

 Copyright 2000 5-8 NT DLL REFERENCE GUIDE 
 

5.3.5 get_scr_user_mem_size() - Get Application Memory Size 

SYNOPSIS 
#include <scr.h>
DWORD get_scr_user_mem_size( void )

DESCRIPTION 
This routine returns the memory size to be used by the application. This value is 
stored in the Windows Registry and is provided as a means of allowing an 
application to use only a portion of the available SCRAMNet memory.  

ARGUMENTS 
None. 

RETURNS 
Returns the number of bytes of SCRAMNet memory to be used. The Windows 
Registry describes memory sizes in kilobytes but this routine returns values in bytes. 
The value returned cannot be larger than the total amount of physical SCRAMNet 
memory in the system. 

ERROR 
get_scr_user_mem_size() will fail if: 

- sp_scram_init() has not been called to initialize the card. 



INTERFACE ROUTINES 

 Copyright 2000 5-9 NT DLL REFERENCE GUIDE 
 

5.3.6 scr_acr_read() - READ ACR location 

SYNOPSIS 
#include <scrplus.h>
unsigned char scr_acr_read( unsigned long mem_loc );

DESCRIPTION 
The scr_acr_read function will READ the Auxiliary Control RAM (ACR) and return 
the value. This function interfaces with the hardware dependent portion of the 
libraries to determine exactly how to access these memory locations. The number of 
ACR locations depends upon the SCRAMNet memory size. There is one byte of 
ACR associated with every longword (32 bits) of SCRAMNet memory. Definitions 
of the bit functions for the ACR are provided in the header files as well as in the 
hardware documentation. 

This routine will not function until SCRAMNet memory and CSRs have been 
mapped. 

ARGUMENTS 
The mem_loc parameter is the number of the memory location that the associated 
ACR is to be read from, as in the following example:  

unsigned char acr_val; 
acr_val = scr_acr_read( 0 ); 

RETURNS 
Returns the value read from the specified ACR.  

ERROR 
scr_acr_read will fail if: 

- CSRs have not yet been mapped. 
- SCRAMNet memory has not been mapped. 
- An invalid memory location was passed by mem_loc parameter. 

 



INTERFACE ROUTINES 

 Copyright 2000 5-10 NT DLL REFERENCE GUIDE 
 

5.3.7 scr_acr_write() - WRITE ACR location 

SYNOPSIS 
#include <scrplus.h>
void scr_acr_write( unsigned long mem_loc, unsigned char
acr_val );

DESCRIPTION 
The scr_acr_write routine will WRITE the Auxiliary Control RAM (ACR) specified 
by mem_loc with the value given. It interfaces with the hardware dependent portion 
of the libraries to determine exactly how to access the ACR locations. The number of 
accessible ACR locations depends upon the SCRAMNet memory size. There is one 
byte of ACR associated with every longword (32 bits) of SCRAMNet memory. 
Definitions of the bit functions for the ACR are provided in the header files as well as 
in the hardware documentation. 

This routine will not function until SCRAMNet CSRs have been mapped. 

ARGUMENTS 
The mem_loc parameter is the number of the memory location where the associated 
ACR will be written, as in the following example:  

unsigned char acr_val = ACR_RIE | ACR_TIE; 
scr_acr_write( 0, acr_val ); 

ACR bits are defined in the header files. 

RETURNS 
None 

ERROR 
scr_acr_write will fail if: 

- CSRs have not yet been mapped. 
- SCRAMNet memory has not been mapped. 
- An invalid memory location was passed by mem_loc parameter. 

 



INTERFACE ROUTINES 

 Copyright 2000 5-11 NT DLL REFERENCE GUIDE 
 

5.3.8 scr_brd_select() - Change SCRAMNet Board (Multiple Board Support 
Only) 

SYNOPSIS 
#include <scrplus.h>
int scr_brd_select( int brd_num);

DESCRIPTION 
scr_brd_select() selects a single SCRAMNet board for user control in multiple board 
systems. After calling this function with the board number passed as the only 
parameter, all other SCRAMNet library routines may then be called to access the 
given board. 

This routine is used only on systems that support multiple SCRAMNet boards. 

ARGUMENTS 
The board number parameter must lie within the range of 0 through N-1, where N is 
the number of board configured on the system. 

RETURNS 
Returns the board number selected if successful or ‘-1’ if an error has occurred. 

ERROR 
scr_brd_select() will fail if: 

- The board number specified is out of range. 
 



INTERFACE ROUTINES 

 Copyright 2000 5-12 NT DLL REFERENCE GUIDE 
 

5.3.9 scr_board_status() - Display Board Status 

SYNOPSIS 
void scr_board_status( HWND )

DESCRIPTION 
Displays a common dialog box filled with information concerning the current 
SCRAMNet board configuration. 

The following current information is given: 

- Node transmit ID 
- CSR base address 
- Memory base address 
- Memory mapped in bytes 
- Memory size in bytes 
- Network time-out 
- External power 
- Mechanical switch loopback status 

ARGUMENTS 
A valid (parent) window handle. This may be any valid handle, such as that from 
your main Windows process or from any dialog box you open. 

RETURNS 
None. 

ERROR 
None. 

EXAMPLE 
The following code segment displays the status dialog box. Due to the complexity of 
Windows NT code, only a small portion of the code is presented. However, full 
examples can be seen in the windiags.c file. 

#include <scrplus.h>
LRESULT WndProc( HWND hWnd, . . .) {

. . .
sp_scram_init(); // map CSRs and memory
. . .
scr_board_status(hWnd); // display status dialog box



INTERFACE ROUTINES 

 Copyright 2000 5-13 NT DLL REFERENCE GUIDE 
 

5.3.10 scr_mem_mm() - Map Memory 

SYNOPSIS 
#include <scrplus.h>
unsigned int scr_mem_mm( int arg );

DESCRIPTION 
scr_mem_mm() performs the host system specific operations to map the SCRAMNet 
physical base memory address into system address space, thus providing pointer 
access to SCRAMNet on-board memory. The global pointer (SCR_LONG_PTR  
scr_vmem_ptrs) is the pointer to the base address of SCRAMNet memory returned 
by the host system. The actual pointer value may be obtained by calling the 
get_base_mem() function. 

ARGUMENTS 
Valid arguments are MAP and UNMAP. Not all systems require that physical 
mapping be unmapped before terminating the application but it is a safe practice to 
unmap the SCRAMNet memory before exiting. 

RETURNS 
Returns a ‘0’ if successful, or a ‘-1’ if an error has occurred. 

ERROR 
scr_mem_mm() will fail if: 

- Memory segment size is greater than a system imposed maximum. 
- Shared memory identifier does not exist. 
- Shared memory identifier is created but the system imposed limit on the 

maximum number of allowed memory system identifiers is exceeded. 
- User is not a superuser and memory device file requires superuser permission. 
- Number of shared memory segments attached to the calling process exceeded the 

system-imposed limit. 
- Available data space is not large enough to accommodate the shared memory 

segment. 
- Illegal physical memory address. 
- Invalid shared memory identifier. 

 



INTERFACE ROUTINES 

 Copyright 2000 5-14 NT DLL REFERENCE GUIDE 
 

EXAMPLE: SCR_MEM_MM IN FILE SCR_MEM_EX.C 
This program uses a pointer to SCRAMNet memory to READ and WRITE values. In 
this case, the SCRAMNet memory pointer is cast to an  (unsigned char *) to allow 
character I/O. The pointer can be cast to any integral or floating point type. The 
puts() function displays the null terminated string at offset 100 in SCRAMNet 
memory. SCRAMNet memory is released before program termination. 

#include <stdio.h>
#include <stdlib.h>
#include <scrplus.h>
main( )
{
SCR_BYTE_PTR mem_ptr;

/* map SCRAMNet memory and set the global pointer to the base */
if( scr_mem_mm( MAP ) != 0 ) {

printf(“Could not map SCRAMNet RAM”);
exit( 0 ); }

/* cast to a character pointer for writing to SCRAMNet RAM
on a character boundary */

mem_ptr = (SCR_BYTE_PTR) get_base_mem();

/* read string into SCRAMNet shared memory at address 0 */
printf(“\nEnter string to store in SCRAMNet: “);
gets( mem_ptr );
printf(“String stored at offset 0\n\n”);

/* display string at offset 100 in SCRAMNet memory */
printf(“Found this at offset 100: “);
strcpy( &mem_ptr[100], “This is offset 100\0” );
puts( &mem_ptr[100] );

/* unmap SCRAMNet memory before termination */
if( scr_mem_mm( UNMAP ) != 0 ) {

printf(“Could not unmap SCRAMNet RAM”);
exit( 0 ); }

}

 



INTERFACE ROUTINES 

 Copyright 2000 5-15 NT DLL REFERENCE GUIDE 
 

5.3.11 scr_probe_mm() - Probe 

SYNOPSIS  
#include <scrplus.h>
int scr_probe_mm( void *addr, unsigned short int flag );

DESCRIPTION 
scr_probe_mm() probes the specified address addr for the validity of that address 
location. The existence of the specified location is determined by attempting a READ 
operation at that address. The memory location in question could be those that have 
been mapped using the scr_mem_mm() and scr_reg_mm() routines in this library. 
Always call this routine to ensure proper mapping was performed when calling the 
map routines. 

ARGUMENTS 
Valid arguments for the flag field are either 1, 2 or 4 based on the READ access 
required. This access refers to the number of bytes. 

RETURNS 
Returns a ‘0’ if a valid address location is specified by the addr argument, or a ‘-1’ if 
the address is invalid. 

ERROR 
scr_probe_mm() will fail if: 

- The flag argument is anything other than a 1, 2 or 4. 
  



INTERFACE ROUTINES 

 Copyright 2000 5-16 NT DLL REFERENCE GUIDE 
 

EXAMPLE SCR_PROBE_MM IN FILE SCR_PROBE_EX.C 
This program maps the memory using scr_mem_mm() and then attempts to access the 
newly mapped memory. It is recommended that scr_probe_mm() be used during 
startup to test the initialization of SCRAMNet. This program is limited in usefulness 
because it does not perform SCRAMNet configuration. The CSRs must be mapped 
via the scr_reg_mm() function before configuration can be accomplished. The CSR 
registers must also be mapped if they are to be probed. 

#include <stdio.h>
#include <stdlib.h>
#include <scrplus.h>
#define TWO 2
main( )
{
SCR_SHORT_PTR mem_ptr;

/* map SCRAMNet memory and set the global pointer to the base */

scr_mem_mm( MAP );

/* cast to an unsigned short int pointer for writing to SCRAMNet
memory on a 16-bit boundary or TWO byte boundary */

mem_ptr = (SCR_SHORT_PTR) get_base_mem();

/* try to access the base of SCRAMNet memory */

if( scr_probe_mm( mem_ptr, TWO ) == -1 ) {
printf(“Unable to access mapped memory. Please check

scr_mem_mm()\n”);
printf(“to see if memory was mapped correctly\n\n”);
exit( 0 ); }

else
printf(“\nMemory mapped and accessed successfully\n”);

/* unmap SCRAMNet memory before termination */

scr_mem_mm( UNMAP );
}



INTERFACE ROUTINES 

 Copyright 2000 5-17 NT DLL REFERENCE GUIDE 
 

5.3.12 scr_reg_mm() - Map Registers 

SYNOPSIS 
#include <scrplus.h>
int scr_reg_mm( int arg );

DESCRIPTION 
scr_reg_mm() sets the global address of  SCRAMNet Control Status Registers 
(CSRs). Access to the individual CSRs is provided via scr_csr_read() and 
scr_csr_write() routines. This function must be called before CSRs can be read or 
written. 

ARGUMENTS 
Valid arguments to scr_reg_mm() are MAP and UNMAP. It is good programming 
practice to unmap the CSRs once the application process is completed. 

RETURNS 
Returns a ‘0’ if successful, or a ‘-1’ if an error has occurred. 

ERROR 
scr_reg_mm() will fail if: 

- Memory segment size is greater than a system imposed maximum. 
- Shared memory identifier does not exist. 
- Shared memory identifier is created but the system imposed limit on the 

maximum number of allowed memory system identifiers is exceeded. 
- User is not a superuser or the root. 
- Number of shared memory segments attached to the calling process exceeded the 

system-imposed limit. 
- Available data space is not large enough to accommodate the shared memory 

segment. 
- Illegal physical memory address. 
- Invalid shared memory identifier. 

 



INTERFACE ROUTINES 

 Copyright 2000 5-18 NT DLL REFERENCE GUIDE 
 

EXAMPLE  

#include <stdio.h>
#include <stdlib.h>
#include <scrplus.h>

main( )
{

/* map SCRAMNet CSRs and set the global pointer to the base */
if( scr_reg_mm( MAP ) != 0 ) {

printf(“Could not map SCRAMNet CSRs”);
exit( 0 ); }

/* set CSR0 to network operation w/data filtering */
scr_csr_write(SCR_CSR0, 0x8c03);

/* display contents of error register CSR1 */
printf(“\nThe contents of CSR1 = %x\n”, scr_csr_read(SCR_CSR1) );

/* unmap SCRAMNet CSRs before termination */
if( scr_reg_mm( UNMAP ) != 0 ) {

printf(“Could not unmap SCRAMNet CSRs”);
exit( 0 ); }

}



INTERFACE ROUTINES 

 Copyright 2000 5-19 NT DLL REFERENCE GUIDE 
 

5.3.13 scr_reset_mm() - Reset FIFOs 

SYNOPSIS 
#include <scrplus.h>
void scr_reset_mm( void );

DESCRIPTION 
scr_reset_mm() duplicates the hardware reset function. This routine initializes the 
SCRAMNet Network Node to a zero condition such that there is always a standard 
starting point when configuring the board from a cold start or a new application.   

scr_reset_mm() accomplishes this task by resetting the controlling mechanism of the 
SCRAMNet Node, via CSR0 and CSR2. 

This reset includes resetting the FIFOs: 

 CSR0[12] - Transmit/Receive FIFO 

 CSR0[13] - Interrupt FIFO 

 CSR0[14] - Shared Memory FIFO 

and clearing the data rerouter and other control bits in CSR2. 

ARGUMENTS 
None. 

RETURNS 
Void. 

ERROR 
scr_reset_mm() will fail if: 

- Control status registers were not mapped. 



INTERFACE ROUTINES 

 Copyright 2000 5-20 NT DLL REFERENCE GUIDE 
 

EXAMPLE SCR_RESET_MM IN FILE SCR_RESET_EX.C 
This program maps the CSRs so that scr_reset_mm() will have them available, calls 
scr_reset_mm(), and resets the board. CSRs are unmapped before program 
termination. 

#include <scrplus.h>

main( )
{

/* map SCRAMNet registers, set the global pointer to the base */
scr_reg_mm( MAP );

/* reset SCRAMNet */
scr_reset_mm( );

/* unmap SCRAMNet registers before termination */
scr_reg_mm( UNMAP );
}

 



INTERFACE ROUTINES 

 Copyright 2000 5-21 NT DLL REFERENCE GUIDE 
 

5.3.14 sp_cfg_read() - READ SCRAMNet Configuration File 

SYNOPSIS 
#include <scrplus.h>
int sp_cfg_read ( int board_number )

DESCRIPTION 
This routine is not used for PCI NT. See sw_cfg_fill() on page 5-24. 

ARGUMENTS 
Not used. 

RETURNS 
Returns a ‘0’. 

ERROR 
Not used. 



INTERFACE ROUTINES 

 Copyright 2000 5-22 NT DLL REFERENCE GUIDE 
 

5.3.15 sp_plus_find() - Find Board Type 

SYNOPSIS 
#include <scrplus.h>
int sp_plus_find ( void )

DESCRIPTION 
The sp_plus_find routine will determine whether the SCRAMNet is a Classic or 
LX/+ board. CSR3 is used to make this determination. Therefore, SCRAMNet 
registers must be mapped before this routine is called. 

ARGUMENTS 
None. 

RETURNS 
Returns a ‘0’ if the board is a Classic, or a ‘1’ if the board is an LX/+ board. 

ERROR 
sp_plus_find() will fail if: 

- The SCRAMNet registers are not mapped. 



INTERFACE ROUTINES 

 Copyright 2000 5-23 NT DLL REFERENCE GUIDE 
 

5.3.16 sp_scram_init() - Initialize SCRAMNet Mapping 

SYNOPSIS 
#include <scr.h>
BOOL sp_scram_init( void )

DESCRIPTION 
This routine sets up the board for access by reading in values from the Windows 
Registry, maps the SCRAMNet CSR registers and memory and sets the values for 
the Node Id and time-out value based on the values in the Windows Registry. 

ARGUMENTS 
None.  

RETURNS 
0 (FALSE) if successful 

If unsuccessful (TRUE), returns one of the following; 

-4 Could not open driver 
-3 Could not map memory 
-2 Could not map CSR’s 
-1 Could not read registry 

ERROR 
sp_scram_init() will fail if: 

- The system is unable to determine the system address for accessing the 
SCRAMNet memory or Control/Status Registers (CSR). 

- The system is unable to properly complete the mapping or other setup needed to 
access the SCRAMNet memory and CSR. 

 
 



INTERFACE ROUTINES 

 Copyright 2000 5-24 NT DLL REFERENCE GUIDE 
 

5.3.17 sw_cfg_fill() - Fills Values Defined in SCRAM_CFG Data Structure 

SYNOPSIS 
#include <scrplus.h>
int sw_cfg_read( SCRAM_CFG *Scramnet_config )

DESCRIPTION 
When programming in a Microsoft Windows environment, it is important to 
remember the fundamental differences between Windows and other environments 
such as DOS and UNIX. One difference is that global data generated for a Dynamic 
Link Library is not shared with any application that uses the Dynamic Link Library. 
All of the configuration information pertinent to the SCRAMNet board is stored in 
the Dynamic Link Library’s global memory, which is unavailable to the application 
program. In a DOS or UNIX environment, simply including the SCRAMNet header 
files would generate this variable and fill in the values at run time. This is not true for 
Windows. 

However, the application program will most likely require certain configuration 
parameters to run correctly. One such parameter, SCR_MEM_LEN (defined in 
scrhwd.h), conveniently allows the application to determine the size of (mapped) 
SCRAMNet memory. 

The application is responsible for copying the configuration information from the 
dynamic link library to its memory space, and it uses sw_cfg_read() to do so. When 
the application calls sw_cfg_read() (with a pointer to the SCRAMNet_config 
variable), the dynamic link library fills in the structure, and the configuration data 
members (such as SCR_MEM_LEN) are then, and only then, valid. 

� 
NOTE:  If the application never uses the configuration data members (defined in 
scrhwd.h), this function need not be called at all. 

ARGUEMENTS 
A pointer to the memory reserved for the SCRAMNet_config variable. The variable 
MUST be named SCRAMNet_config (the compiler preprocessor definitions in 
scrhwd.h require this for compatibility). Also, the memory must have been 
previously allocated for this variable or the function will fail. 

RETURNS 
Returns a ‘0’ if successful or ‘-1’ if there was a memory error during the data copy. 

ERROR 
sw_cfg_fill() will fail if memory was not reserved for the configuration structure. 



INTERFACE ROUTINES 

 Copyright 2000 5-25 NT DLL REFERENCE GUIDE 
 

EXAMPLE 
This program initializes the SCRAMNet card then fills the configuration variable. 

#include <process.h> // exit()
#include <scrplus.h> // includes scrhwd.h

SCRAM_CFG Scramnet_config; // NOTE: memory allocated from global
pool!

int main ( void ) {

sp_scram_init();

if ( sw_cfg_fill(&Scramnet_config) < 0 ) {
printf(“Error filling configuration data structure.\n”);
exit(-1);
} /* if */

printf(“Mapped SCRAMNet memory size (in bytes) is:
%d\n”,SCR_MEM_LEN);

return(0);
} /* main */

 
 
 
 



INTERFACE ROUTINES 

 Copyright 2000 5-26 NT DLL REFERENCE GUIDE 
 

5.3.18 sw_get_int() - Get NT Interrupt Number 

SYNOPSIS 
BYTE sw_get_int( void )

DESCRIPTION 
This routine gets the current interrupt number being used by the Windows NT 
SCRAMNet driver. 

ARGUMENTS 
None. 

RETURNS 
BYTE value (unsigned char) representing current interrupt number. 

ERROR 
None. 

EXAMPLE 
This program first maps SCRAMNet memory, then it determines the current 
interrupt. 

#include <scrplus.h>

int main( void ) {

sp_scram_init(); // map CSRs and memory

printf(“Current SCRAMNet interrupt %d\n”,sw_get_int());
return(0);

} /* main */

 
 
 
 



INTERFACE ROUTINES 

 Copyright 2000 5-27 NT DLL REFERENCE GUIDE 
 

5.3.19 sw_int_connect() - Initialize NT Interrupts 

SYNOPSIS 
BOOL sw_int_connect( void )

DESCRIPTION 
This routine initializes interrupts in the Windows NT environment. This call creates 
an event object which is passed to the SCRAMNet device driver. When the interrupt 
fires, the object is signaled.  

The defined value SCR_INTERRUPT_OBJECT is used along with the board number 
as the interrupt object. When running a single-board system, just use board number 0. 

ARGUMENTS 
None. 

RETURNS 
TRUE if interrupts were successfully connected, FALSE if not. 

ERROR 
None. 

EXAMPLE 
This program first maps SCRAMNet memory, then it connects interrupts.  If the 
interrupts connected successfully, it creates an event object and waits for an interrupt. 

#include <scr.h>
#include <scrplus.h>

int main( void )
{
char intString[30]
sp_scram_init(); // map CSRs and memory

if ( sw_int_connect() )
{

/* Create interrupt event object. */
sprintf(intString, “%s%d”, SCR_INTERRUPT_OBJECT, 0);
hIntEvent = CreateEvent(NULL,FALSE,FALSE,intString);

/* Wait forever, or until SCRAMNet interrupts. */
if (WAIT_OBJECT_0 == WaitForSingleObject(hIntEvent,INFINITE))
{

printf(“SCRAMNet interrupted!\n”);
sw_int_disconnect(); // disconnect interrupts
CloseHandle(hIntEvent); // close interrupt object handle

} /* if */
return(0);

}} /* main */



INTERFACE ROUTINES 

 Copyright 2000 5-28 NT DLL REFERENCE GUIDE 
 

5.3.20 sw_int_disconnect() - Terminate NT Interrupts 

SYNOPSIS 
BOOL sw_int_disconnect( void )

DESCRIPTION 
This routine terminates interrupt operations in the Windows NT environment.  

This function does not close the handle created by using 
SCR_INTERRUPT_OBJECT. That must be done using the interrupt termination 
code. 

ARGUMENTS 
None. 

RETURNS 
TRUE if interrupts were successfully disconnected, FALSE if not. 

ERROR 
None. 

EXAMPLE 
This program first maps SCRAMNet memory, then it connects interrupts. If the 
interrupts connected successfully, it creates an event object and waits for an interrupt. 
When the interrupt fires, interrupt processing is terminated. 

#include <scrplus.h>

int main( void )
{

char intString[30]
sp_scram_init(); // map CSRs and memory
if ( sw_int_connect() )
{
/* Create interrupt event object. */
sprintf(intString, “%s%d”, SCR_INTERRUPT_OBJECT, 0);
hIntEvent = CreateEvent(NULL,FALSE,FALSE,intString);

/* Wait forever, or until SCRAMNet interrupts. */
if (WAIT_OBJECT_0 == WaitForSingleObject(hIntEvent,INFINITE))
{
printf(“SCRAMNet interrupted!\n”);
sw_int_disconnect(); // disconnect interrupts
CloseHandle(hIntEvent); // close interrupt object handle
} /* if */
return(0);

}} /* main */

 



INTERFACE ROUTINES 

 Copyright 2000 5-29 NT DLL REFERENCE GUIDE 
 

5.3.21 sw_mem_addr() - READ SCRAMNet Memory Address 

SYNOPSIS 
DWORD sw_mem_addr( void )

DESCRIPTION 
This routine returns the physical card address of SCRAMNet memory.  

This information may be used by display routines or for loop determination. The 
value returned, however, may NOT be used to access SCRAMNet memory (use 
get_base_mem() for that). 

ARGUMENTS 
None. 

RETURNS 
The DWORD physical address at which the Base of SCRAMNet memory is located. 

ERROR 
sw_mem_addr() will return a NULL pointer value if it cannot access the 
configuration registers on the card. 

EXAMPLE 
This program first maps SCRAMNet memory, then it determines the physical 
address of the memory. 

#include <scrplus.h>

int main( void ) {

sp_scram_init(); // map CSRs and memory

printf(“Physical address of SCRAMNet memory is: \
0x%08x”,sw_mem_addr());

return(0);
} /* main */

 



INTERFACE ROUTINES 

 Copyright 2000 5-30 NT DLL REFERENCE GUIDE 
 

5.3.22 sw_net_to() - READ Network Time-out 

SYNOPSIS 
int sw_net_to( void )

DESCRIPTION 
This routine returns the network time-out (as stored in Windows NT Registry). This 
value was written to the SCRAMNet card when the driver began execution. 

ARGUMENTS 
None. 

RETURNS 
The integer value representing the network time-out, as stored in the Registry (use 
WinEPI to modify this value in the Registry, or use sp_net_to() to change the current 
time-out value for the SCRAMNet card). 

ERROR 
None 

EXAMPLE 
This program first maps SCRAMNet memory, then it reports the time-out value. 

#include <scrplus.h>

int main( void ) {

sp_scram_init(); // map CSRs and memory

printf(“Stored (Registry) time-out value is %d”,sw_net_to());

return(0);
} /* main */

 



INTERFACE ROUTINES 

 Copyright 2000 5-31 NT DLL REFERENCE GUIDE 
 

5.3.23 sw_reg_addr() - READ CSR Address 

SYNOPSIS 
DWORD sw_reg_addr( void )

DESCRIPTION 
This routine returns the physical card address of the CSRs.  

This information may be used by display routines or for loop determination. The 
value returned, however, may NOT be used to access the CSRs (use scr_csr_read() 
and scr_csr_write() for that). 

ARGUMENTS 
None. 

RETURNS 
The DWORD physical address of the CSR registers. 

ERROR 
sw_reg_addr() will return a NULL pointer value if it cannot access the configuration 
registers on the card. 

EXAMPLE 
This program first maps the CSRs, then it determines the physical address of the 
CSRs. 

#include <scrplus.h>

int main( void ) {

sp_scram_init(); // map CSRs and memory

printf(“Physical address of CSRs is: 0x%08x”,sw_reg_addr());

return(0);
} /* main */

 



INTERFACE ROUTINES 

 Copyright 2000 5-32 NT DLL REFERENCE GUIDE 
 

5.3.24 sw_set_size() - Set NT Memory Size 

SYNOPSIS 
BOOL sw_set_size( DWORD )

DESCRIPTION 
This routine sets the desired amount of memory to map in the Windows NT Registry 
upon driver initialization (any amount up to the physical memory limitations of the 
SCRAMNet card). Previously, this was done by editing the scrcfg.dat file. However, 
Windows NT uses the Registry making modification of this value more difficult 
without this routine. 

The memory setting assigned here does not take effect until the SCRAMNet driver 
begins execution. The easiest way to be sure the proper settings are used is to shut 
down Windows NT (reboot) and re-execute the SCRAMNet code. 

ARGUMENTS 
A DWORD value indicating the number of bytes of memory to map. 

RETURNS 
TRUE if setting was stored in the Registry, FALSE if not. 

ERROR 
None 

EXAMPLE 
This program first maps SCRAMNet memory, then it sets the desired mapping range 
to 256KB. 

#include <scrplus.h>

int main( void ) {

sp_scram_init(); // map CSRs and memory

if ( sw_set_size(256*1024) ) { // convert to _BYTES_
printf(“SCRAMNet mapped memory modified (please reboot)!\n”);
} /* if */
else {
printf(“Error setting SCRAMNet mapped memory!\n”);
} /* else */

return(0);
} /* main */

 



INTERFACE ROUTINES 

 Copyright 2000 5-33 NT DLL REFERENCE GUIDE 
 

5.3.25 sw_set_int() - Set NT Interrupt Number 

SYNOPSIS 
BOOL sw_set_int( BYTE )

DESCRIPTION 
This routine provides a way to set the interrupt number that the Windows NT 
SCRAMNet driver will use when it initializes. A correct value here is required to 
assure proper interrupt operations. 

When the interrupt number has been determined, use sw_set_int() to modify the 
Registry, modify the Registry manually, or use WinEPI or WinDiags (under the 
“Settings…” menu command) to modify the Registry. 

ARGUMENTS 
A BYTE value (unsigned char) consisting of the following: 

- 3 
- 4 
- 5 
- 7 
- 9 

- 10 
- 11 
- 12 
- 13 
- 14 

RETURNS 
TRUE if setting was stored in the Registry, FALSE if not. 

ERROR 
None 

EXAMPLE 
This program first maps SCRAMNet memory, and then it sets the desired interrupt to 
10. 
 
#include <scrplus.h>

int main( void ) {

sp_scram_init(); // map CSRs and memory

if ( sw_set_int(10) ) {
printf(“SCRAMNet interrupt modified (please reboot)!\n”);
} /* if */
else {
printf(“Error setting SCRAMNet interrupt!\n”);
} /* else */

return(0);
} /* main */



INTERFACE ROUTINES 

 Copyright 2000 5-34 NT DLL REFERENCE GUIDE 
 

5.3.26 sw_user_size() - READ NT Memory Size 

SYNOPSIS 
DWORD sw_user_size( void )

DESCRIPTION 
Determines the user-specified memory size value as stored in the Windows NT 
Registry. This value is the amount of memory the SCRAMNet driver will map, 
which may include all or some of the physical SCRAMNet memory. Values greater 
than the physical amount of memory reported by the SCRAMNet card will result in 
mapping the entire SCRAMNet memory space. A value of zero is undefined and will 
cause failure.  

To change this value, see sw_set_size(). (Page 5-32) 

ARGUMENTS 
None. 

RETURNS 
The DWORD value representing the user-specified memory (in bytes). 

ERROR 
None 

EXAMPLE 
This program first maps SCRAMNet memory, then it reports the user-specified 
memory value. 

#include <scrplus.h>

int main( void ) {

sp_scram_init(); // map CSRs and memory

printf(“Stored (Registry) user-specified memory size is \
%ld”,sw_user_size());

return(0);
} /* main */

 



INTERFACE ROUTINES 

 Copyright 2000 5-35 NT DLL REFERENCE GUIDE 
 

5.4 Data Flow Control Routines 
The Data Flow Control routines are designed to aid the development of a program that 
communicates between Big-Endian and Little-Endian based machines. Since SCRAMNet 
VME cards do not provide swapping functions and are run primarily on Big-Endian 
systems, the PCI, EISA, ISA and other PC-based SCRAMNet cards do provide byte 
swapping functions to help convert data from Little Endian to Big Endian format. 

The SCRAMNet DLL provides a function to place the SCRAMNet Network interface 
card in one of three modes—byte, longword or word. In byte mode all of the bytes are in 
reverse order. In longword mode there is no byte swapping. In word mode the upper two 
bytes and the lower two bytes of every longword are reversed.  

To use the same offsets for both Big- and Little-Endian systems, the SCRAMNet card can 
be instructed to alter the byte order of the values being read. This alteration allows a 
Little-Endian system reading a byte at offset zero to see the same value as a Big-Endian 
system. 

EXAMPLE 
Suppose that the longword value ‘AABBCCDD hex’ is stored in SCRAMNet memory at 
offset zero. Bits 31 through 24 (AA hex) would be written at byte offset 0; bits 23 through 
16 (BB hex) at byte offset 1; bits 15 through 8 (CC hex) at byte offset 2; and bits 7 
through 0 (DD hex) at byte offset 3. On a Little-Endian system, these bytes would be 
stored and accessed in reverse order so that a READ to offset zero would return ‘DD hex’ 
while the same READ on a Big-Endian system would return ‘AA hex’. 



INTERFACE ROUTINES 

 Copyright 2000 5-36 NT DLL REFERENCE GUIDE 
 

5.4.1 GetScrTransactionType() - Get Byte Swapping Mode 

SYNOPSIS 
#include <scr.h>
BYTE GetScrTransactionType ( void )

DESCRIPTION 
This routine accesses the SCRAMNet byte-swapping controls to determine the 
current byte-swapping mode, and returns a constant integer value indicating the 
current byte-swapping method in use. (See Table 5-3 for more information on the 
differences between Long_mode, Word_mode, and Byte_mode). 

ARGUMENTS 
None 

RETURNS 
Returns the constant value Long_mode if the card is in longword swapping mode. 
Returns the constant value Word_mode if the card is in word swapping mode. 
Returns the constant value Byte_mode if the card is in byte swapping mode. 

ERROR 
GetScrTransactionType() will fail if: 

- There is an error in interacting with the SCRAMNet byte-swapping controls. 



INTERFACE ROUTINES 

 Copyright 2000 5-37 NT DLL REFERENCE GUIDE 
 

5.4.2 SetScrTransactionType() - Alter Byte-Access Order 

SYNOPSIS 
#include <scr.h>
BOOL SetScrTransactionType ( BYTE Mode )

DESCRIPTION 
This routine alters the order in which bytes are accessed from SCRAMNet memory. 
The header file includes constants defined as Long_mode, Word_mode and 
Byte_mode. When this function is called with one of these values it alters the byte 
order accordingly. 

ARGUMENTS 
The mode parameter is used to determine which byte-swapping mode the card should 
be placed in. This argument is set using one of the following constants Long_mode, 
Word_mode or Byte_mode. When the function is called with one of these values the 
byte order is altered according to Table 5-3. 

Table 5-3  Byte Swapping Table 

Parameter Swap mode Data bit translation  
  M(31:24) M(23:16) M(15:8) M(7:0) 

Long_mode no swap, 32-bit R(31:24) R(23:26) R(15:8) R(7:0) 
Word_mode 16-bit R(15:8) R(7:0) R(31:24) R(23:16) 
Byte_mode 8-bit R(7:0) R(15:8) R(23:16) R(31:24) 

 

RETURNS 
TRUE if operation successful, FALSE if there was an error in configuring the 
SCRAMNet card to work in the appropriate swapping mode.  

ERROR 
SetScrTransactionType() will fail if: 

- There is an error in configuring the device to work in the specified mode. 



INTERFACE ROUTINES 

 Copyright 2000 5-38 NT DLL REFERENCE GUIDE 
 

5.4.3 scr_dfltr_mm() - Set Data Filter 

SYNOPSIS 
#include <scrplus.h>
void scr_dfltr_mm( int arg)

DESCRIPTION 
scr_dfltr_mm() sets the  SCRAMNet node to one of three data filtering modes—turn 
off filter mode, filter above the first 4 KB memory locations, or filter entire 
SCRAMNet memory. One of these three modes initializes the host appropriately to 
filter network data WRITE cycles. 

The Data Filter control bits in CSR0 include: 

 CSR0[10] - Enable TX Data Filter 
 CSR0[11] - Enable Lower 4 KB Data Filter 

CSR0[10] CSR0[11] Data Filter State 

0 0 OFF 
0 1 OFF 
1 0 HI - Filter After First 4 KB 
1 1 ALL - Filter All Memory 

ARGUMENTS 
Valid arguments to scr_dfltr_mm() are FLT_OFF, FLT_HGH or FLT_ALL. 
FLT_OFF disables the data filter altogether. FLT_HGH monitors and filters above 
the first 4 KB of SCRAMNet memory. FLT_ALL initializes the host to monitor and 
filter the entire SCRAMNet memory. 

RETURNS 
Void 

ERROR 
scr_dfltr_mm() will fail if: 

- Control status registers were not mapped. 



INTERFACE ROUTINES 

 Copyright 2000 5-39 NT DLL REFERENCE GUIDE 
 

EXAMPLE SCR_DFLTR_MM IN FILE SCR_DFLTR_EX.C 
This program first maps the CSRs, then it demonstrates the setting of the data filter to 
its various modes. 

 
#include <scrplus.h>

main( )
{

/* map SCRAMNet registers and set the global pointer to the base */
scr_reg_mm( MAP );

/* reset SCRAMNet NOTE: no filtering now */
scr_reset_mm( );

/* enable data filtering above the first 4k only */
scr_dfltr_mm( FLT_HGH );

/* enable data filtering for all memory */
scr_dfltr_mm( FLT_ALL );

/* disable data filtering */
scr_dfltr_mm( FLT_OFF );

/* unmap SCRAMNet registers before termination */
scr_reg_mm( UNMAP );
}

 
 



INTERFACE ROUTINES 

 Copyright 2000 5-40 NT DLL REFERENCE GUIDE 
 

5.4.4 scr_lnk_mm() - Link to Network 

SYNOPSIS 
#include <scrplus.h>
void scr_lnk_mm( int cmd );

DESCRIPTION 
scr_lnk_mm() activates the node and then inserts it into the network ring. Inserting 
the node involves setting it to transmit and receive data as well as enabling the Insert 
Mode bit. If the fiber optic bypass switch is being used, then the Disable Fiber Optic 
Loopback bit must be set. 

The Insert node control bits in CSR0 include: 

 CSR0[0] - Receiver Enable 
 CSR0[1] - Transmitter Enable 
 CSR0[15] - Insert Node 

The Insert node control bits in CSR 2 include: 

 CSR2[7] - Disable Fiber Optic Loopback 

ARGUMENTS 
Valid arguments to scr_lnk_mm() are SCR_LNK and RST_LNK. 

SCR_LNK initializes the SCRAMNet Network node and includes this specific node 
into the network ring. RST_LNK deactivates the node by extracting it off the 
network and resetting the control bits. 

RETURNS 
Void 

ERROR 
scr_lnk_mm() will fail if: 

- Control/status registers were not mapped. 
 



INTERFACE ROUTINES 

 Copyright 2000 5-41 NT DLL REFERENCE GUIDE 
 

EXAMPLE SCR_LNK_MM IN FILE SCR_LNK_EX.C 
This program first maps the CSRs, then it demonstrates the insertion of a node into 
the network ring. In this mode, the network updates SCRAMNet RAM and this node 
updates on other nodes by writing to SCRAMNet RAM. If the node is not inserted 
into the ring, the SCRAMNet card functions simply as a memory board. 

 
#include <scrplus.h>

main( )
{

/* map SCRAMNet registers and set the global pointer to the
base */

scr_reg_mm( MAP );

/* reset SCRAMNet NOTE: Node not inserted into network now*/
scr_reset_mm( );

/* makes node an active network participant */
scr_lnk_mm( SCR_LNK );

/* removes node from network participation */
scr_lnk_mm( RST_LNK );

/* unmap SCRAMNet registers before termination */
scr_reg_mm( UNMAP );
}

 
 



INTERFACE ROUTINES 

 Copyright 2000 5-42 NT DLL REFERENCE GUIDE 
 

5.4.5 scr_wml_mm() - Write-Me-Last 

SYNOPSIS 
#include <scrplus.h>
void scr_wml_mm( int arg );

DESCRIPTION 
scr_wml_mm() can set the update mode for SCRAMNet RAM. In normal mode, the 
WRITE attempt to SCRAMNet RAM results in the data going directly to RAM and 
simultaneously being mirrored to the network. The alternative is “Write-Me-Last” 
mode. In this mode, the WRITE attempt to SCRAMNet memory is sent directly to 
the network. SCRAMNet RAM remains unchanged until the message returns from 
the network. Upon return, the WRITE data is placed in the SCRAMNet RAM. 

scr_wml_mm() can be used as a diagnostic procedure in determining whether the data 
received by the host system is the same as the data that was sent out. This can also be 
used in conjunction with the self-interrupt mode. 

The No-Write-to-Host control bits in CSR2 include: 

 CSR2[8] - Disable Host to SM WRITE 
 CSR2[9] - Enable Write Own Slot 

ARGUMENTS 
Valid arguments to scr_wml_mm() are NTW_WRT_HST and RST_NWH. 
NTW_WRT_HST enables the diagnostic mode, whereas RST_NWH enables Host 
WRITEs to shared memory and disables writing its own network slot to memory. 

RETURNS 
Void 

ERROR 
scr_wml_mm() will fail if: 

- Control status registers were not mapped. 
 

� 
 NOTE: Earlier versions of the SCRAMNet library supported this routine with the 
name scr_nwh_mm(). This new routine scr_wml_mm() provides the same 
functionality as scr_nwh_mm() did. 
 
 



INTERFACE ROUTINES 

 Copyright 2000 5-43 NT DLL REFERENCE GUIDE 
 

EXAMPLE SCR_WML_MM IN FILE SCR_WML_EX.C 
This program illustrates how to set the SCRAMNet RAM update mode for either Write-
Me-Last, or for direct WRITE to SCRAMNet RAM, which is simultaneously mirrored to 
the network. The Write-Me-Last mode forces any WRITE to SCRAMNet RAM onto the 
network first. After the message returns from the network, the data is written to the 
originating node. This mode ensures that all other nodes receive the data before the 
originating node. 

To use the Write-Me-Last mode, WRITE ‘0x8003’ to CSR0. This entry ensures that the 
node is inserted into the ring and is transmitting and receiving. Calling scr_lnk() 
accomplishes this task. If the node is not active on the ring, the WRITE to memory that is 
being redirected to the network will never be transmitted, the data will never be received, 
and memory will not be updated. Instead, the FIFO buffer will eventually overflow and 
data will be lost permanently. If the condition is observed before the transmit FIFO 
overflows, set CSR0 to ‘0x8003’, and the buffer will flush itself onto the network. Once 
the data is received, SCRAMNet RAM will be updated.  

 
WARNING:  The transmit FIFO can hold only 1024 WRITE attempts. 

 
 

#include <scrplus.h>

main( )
{
/* map SCRAMNet registers and set the global pointer to the base
*/
scr_reg_mm( MAP );

/* reset SCRAMNet NOTE: Node now WRITEs to shared memory only.
This is the same mode as scr_wml_mm( RST_NWH ) */

scr_reset_mm( );

/* makes node an active network participant */
scr_lnk_mm( SCR_LNK );

/* now we change it so that the WRITEs to shared memory go
directly to the network. Shared memory will not be updated
until the data returns from the network */

scr_wml_mm( NTW_WRT_HST );

/* now we WRITE directly to SCRAMNet RAM which is mirrored to the
network */

scr_wml_mm( RST_NWH );

/* removes node from network participation */
scr_lnk_mm( RST_LNK );

/* unmap SCRAMNet registers before termination */
scr_reg_mm( UNMAP );
}



INTERFACE ROUTINES 

 Copyright 2000 5-44 NT DLL REFERENCE GUIDE 
 

5.4.6 sp_gtm_mm() - Return current transaction mode (PCI/PMC Only) 

SYNOPSIS 
BYTE sp_gtm_mm( void )

DESCRIPTION 
Provides a method for determining the current transaction mode for SCRAMNet 
memory access (Longword, Word, or Byte). 

ARGUMENTS 
None. 

RETURNS 
The BYTE value (unsigned char) representing the current transaction mode (0 for 
Longword, 1 for Word, and 2 for Byte). 

ERROR 
None. 

EXAMPLE 
This program first maps SCRAMNet memory, then it determines the current 
transaction mode. 

#include <scrplus.h>

int main( void ) {

sp_scram_init(); // map CSRs and memory

printf(“Current SCRAMNet memory transaction mode is: \
%d\n”,sp_gtm_mm());

return(0);
} /* main */

 
 
 



INTERFACE ROUTINES 

 Copyright 2000 5-45 NT DLL REFERENCE GUIDE 
 

5.4.7 sp_stm_mm() - Set transaction mode (PCI/PMC Only) 

SYNOPSIS 
BOOL sp_stm_mm( BYTE )

DESCRIPTION 
Provides a method for setting the transaction mode for SCRAMNet memory access 
(Longword, Word, or Byte). 

ARGUMENTS 
BYTE value (unsigned char) consisting of: 

- “Long_mode” (0) 
- “Word_mode” (1) 
- “Byte_mode” (2) 

See Table 5-3 for more information. 

RETURNS 
TRUE if the transaction mode was set, FALSE if not. 

ERROR 
None. 

EXAMPLE 
This program first maps SCRAMNet memory, then sets the transaction mode to 
“Word_mode”. 

 
#include <scrplus.h>

int main( void ) {

sp_scram_init(); // map CSRs and memory

sp_stm_mm(Word_mode);

return(0);
} /* main */

 
 
 



INTERFACE ROUTINES 

 Copyright 2000 5-46 NT DLL REFERENCE GUIDE 
 

5.5 Interrupt Routines 

5.5.1 scr_acr_mm() - ACR Enable 

SYNOPSIS 
#include <scrplus.h>
void scr_acr_mm ( int arg );

DESCRIPTION 
scr_acr_mm() enables/disables the Auxiliary Control RAM (ACR). The Auxiliary 
Control RAM provides a method of interrupt control when a particular shared 
memory location is to be accessed. This function permits access to the ACR. Once in 
ACR access mode, the ACR is swapped in place of the SCRAMNet Network Node 
memory. Access to the ACR is via the same pointer used to access SCRAMNet main 
RAM. WRITEs using this pointer are directed to the ACR, as are READs when in 
ACR mode. Once in ACR access mode, configure ACR and use this command again 
with an appropriate argument to disable ACR access mode and regain access to 
SCRAMNet main RAM. 

The Auxiliary Control RAM control bits in CSR0 include: 
 CSR0[4] - Auxiliary Control RAM enable 

ARGUMENTS 
Valid arguments to scr_acr_mm() are MAP and UNMAP. MAP enables the ACR 
mode for modification. This action must be followed by UNMAP, which disables the 
ACR and returns to normal operation. 

RETURNS 
Void 

ERROR 
scr_acr_mm() will fail if: 

- Control status registers were not mapped. 

EXAMPLE SCR_ACR_MM 
See scr_int_mm (Page 5-47). 



INTERFACE ROUTINES 

 Copyright 2000 5-47 NT DLL REFERENCE GUIDE 
 

5.5.2 scr_int_mm() - Set Interrupt Mode 

SYNOPSIS 
#include <scrplus.h>
void scr_int_mm ( int cmd, int arg );

DESCRIPTION 
scr_int_mm() configures the host SCRAMNet node for interrupt operations. This 
routine assumes that the Auxiliary Control RAM (ACR) has been configured. 

scr_int_mm() sets the desired type of interrupt scheme specified by the user. 
SCRAMNet defines three levels of cmd mode; that is, three levels of interrupt 
schemes. 

 1 - Receive Interrupts 
 2 - Transmit Interrupts 
 3 - Interrupt on Errors 

These modes can either be set or reset based on the argument fields. 

ARGUMENTS 
Valid cmd arguments to scr_int_mm() are TX_INT, RX_INT and INT_ERR. Valid 
arg arguments to scr_int_mm() include CLR_INT to clear the selected mode, 
RST_INT to reset the mode, and SET_INT to set the selected cmd interrupt mode. 

RETURNS 
Void. 

ERROR 
scr_int_mm() will fail if: 

- Control/status registers were not mapped. 
 



INTERFACE ROUTINES 

 Copyright 2000 5-48 NT DLL REFERENCE GUIDE 
 

EXAMPLE SCR_ACR_MM & SCR_INT_MM IN FILE 
SCR_ACR_INT_EX.C 

This program demonstrates setting Interrupts by enabling and disabling the ACR with 
scr_acr_mm(). While in ACR access mode, address-interrupt properties can be 
modified by changing the corresponding ACR address. Once ACR is configured, 
enable processing of interrupts with scr_int_mm(). 

 
#include <scrplus.h>

main( )
{
SCR_LONG_PTR mem_ptr;
unsigned short int csr_tmp=0;

/* map SCRAMNet memory and registers */

scr_reg_mm(MAP);
scr_mem_mm(MAP);

/* cast the memory and ACR pointer to access main RAM and ACR */
mem_ptr = get_base_mem();

/* set memory to ACR access mode */
scr_acr_mm(MAP);

/* first four bytes Transmit Interrupt Enable (TIE) */
mem_ptr[0] = 0x01;

/* the next four bytes both TIE and RIE */
mem_ptr[1] = 0x03;

/* re-enable main SCRAMNet RAM disabling ACR RAM */
scr_acr_mm( UNMAP );

/* set SCRAMNet to recognize the need to transmit interrupts */
scr_int_mm(TX_INT,SET_INT);

/* set SCRAMNet to recognize and enable the processing of incoming
interrupts */

scr_int_mm(RX_INT,SET_INT);

/* unmap SCRAMNet memory and registers before termination */
scr_mem_mm(UNMAP);
scr_reg_mm(UNMAP);
}

 



INTERFACE ROUTINES 

 Copyright 2000 5-49 NT DLL REFERENCE GUIDE 
 

5.6 Memory Access Routines 

5.6.1 get_base_mem() - Get Memory Pointer 

SYNOPSIS 
#include <scrplus.h>
SCR_LONG_PTR get_base_mem ( void );

DESCRIPTION 
This routine will return a pointer to the base address of SCRAMNet memory. The 
routine scr_mem_mm() must be called before this function will return a valid value.  

ARGUMENTS 
None. 

RETURNS 
Returns the pointer to SCRAMNet memory. 

ERROR 
get_base_mem will fail if: 

- SCRAMNet memory has not yet been mapped. 
 



INTERFACE ROUTINES 

 Copyright 2000 5-50 NT DLL REFERENCE GUIDE 
 

5.6.2 ReadSCRByte() - READ Byte of SCRAMNet Memory 

SYNOPSIS 
#include <scr.h>
BYTE ReadSCRByte( DWORD offset, BYTEPTR nValue )

DESCRIPTION 
This routine reads a single BYTE (8-bit unsigned char) value from SCRAMNet 
memory at the offset specified. 

ARGUMENTS 
The offset parameter is a DWORD value specifying the number of BYTE values 
from the start of SCRAMNet memory to the desired value.  

The nValue parameter is a pointer to a BYTE in which the value read from memory 
will be copied. 

RETURNS 
Returns the BYTE read from memory. 

ERROR 
ReadSCRByte() will fail if: 

- SCRAMNet memory has not been mapped yet.  



INTERFACE ROUTINES 

 Copyright 2000 5-51 NT DLL REFERENCE GUIDE 
 

5.6.3 ReadSCRLong() - READ Longword of SCRAMNet Memory 

SYNOPSIS 
#include <scr.h>
DWORD ReadSCRLong( DWORD offset, DWORDPTR lnValue )

DESCRIPTION 
This routine reads a single DWORD (32-bit unsigned long integer) value from 
SCRAMNet memory at the specified offset. 

ARGUMENTS 
The offset parameter is a DWORD value specifying the number of DWORD values 
from start the of SCRAMNet memory to the desired value.  

The lnValue parameter is a pointer to a DWORD were the value read from memory 
will be copied. 

RETURNS 
Returns the DWORD read from memory. 

ERROR 
ReadSCRLong() will fail if: 

- SCRAMNet memory has not been mapped yet.  



INTERFACE ROUTINES 

 Copyright 2000 5-52 NT DLL REFERENCE GUIDE 
 

5.6.4 ReadSCRWord() - READ Word of SCRAMNet Memory 

SYNOPSIS 
#include <scr.h>
WORD ReadSCRWord( DWORD offset, WORDPTR nValue )

DESCRIPTION 
This routine reads a single WORD (16-bit unsigned short integer) value from 
SCRAMNet memory at the offset specified. 

ARGUMENTS 
The offset parameter is a DWORD value specifying the number of WORD values 
from the start of SCRAMNet memory to the desired value.  

The nValue parameter is a pointer to a WORD were the value read from memory 
will be copied. 

RETURNS 
Returns the WORD read from memory. 

ERROR 
ReadSCRWord() will fail if: 

- SCRAMNet memory has not been mapped yet.  



INTERFACE ROUTINES 

 Copyright 2000 5-53 NT DLL REFERENCE GUIDE 
 

5.6.5 WriteSCRByte() - WRITE Byte to SCRAMNet Memory 

SYNOPSIS 
#include <scr.h>
BYTE WriteSCRByte ( DWORD offset, BYTE nValue )

DESCRIPTION 
This routine writes a single BYTE ( 8-bit unsigned char ) value to SCRAMNet 
memory at the offset specified. 

ARGUMENTS 
The offset parameter is a DWORD value specifying the number of BYTE values 
from the start of SCRAMNet memory to the desired location.  

The nValue parameter is a the BYTE that is to be written to SCRAMNet memory. 

RETURNS 
Returns the BYTE written to memory. 

ERROR 
WriteSCRByte() will fail if: 

- SCRAMNet memory has not been mapped yet.  



INTERFACE ROUTINES 

 Copyright 2000 5-54 NT DLL REFERENCE GUIDE 
 

5.6.6 WriteSCRLong() - WRITE Longword to SCRAMNet Memory 

SYNOPSIS 
#include <scr.h>
DWORD WriteSCRLong( DWORD offset, DWORD lnValue )

DESCRIPTION 
This routine writes a single DWORD (32-bit unsigned long integer) value to 
SCRAMNet memory at the offset specified. 

ARGUMENTS 
The offset parameter is a DWORD value specifying the number of DWORD values 
from the start of SCRAMNet memory to the desired location.  

The lnValue parameter is the DWORD that is to be written to SCRAMNet memory. 

RETURNS 
Returns the DWORD written to memory. 

ERROR 
WriteSCRLong() will fail if: 

- SCRAMNet memory has not been mapped yet.  



INTERFACE ROUTINES 

 Copyright 2000 5-55 NT DLL REFERENCE GUIDE 
 

5.6.7 WriteSCRWord() - WRITE Word to SCRAMNet Memory 

SYNOPSIS 
#include <scr.h>
WORD WriteSCRWord( DWORD offset, WORD nValue )

DESCRIPTION 
This routine writes a single WORD (16-bit unsigned short integer) value to 
SCRAMNet memory at the offset specified. 

ARGUMENTS 
The offset parameter is a DWORD value specifying the number of WORD values 
from the start of SCRAMNet memory to the desired location.  

The nValue parameter is the WORD to be written to SCRAMNet memory. 

RETURNS 
Returns the WORD written to memory. 

ERROR 
WriteSCRWord() will fail if: 

- SCRAMNet memory has not been mapped yet.  



INTERFACE ROUTINES 

 Copyright 2000 5-56 NT DLL REFERENCE GUIDE 
 

5.7 DMA Routines 

5.7.1 Overview 
The SCRAMNet PCI card provides DMA capability. A user application can access 
SCRAMNet DMA capability through the two routines scr_dma_read() and 
scr_dma_write(). These functions are only available in the NTPCPC2S software package 
for NT 4.0. 

These DMA routines generate hardware interrupts during the DMA transaction. 

5.7.2 scr_dma_read() - DMA READ from SCRAMNet Memory (PCI Only) 

SYNOPSIS 
#include <scrhwd.h>
int scr_dma_read( PVOID user_addr, ULONG scr_offset, ULONG
num_bytes )

DESCRIPTION 
This routine uses the SCRAMNet+ PCI  DMA capability to READ from SCRAMNet 
memory into a user memory buffer. 

ARGUMENTS 
PVOID user_addr -  This is the starting address of the user memory buffer that is the 
destination for the data READ from SCRAMNet memory. 
ULONG scr_offset -  This is the offset address into SCRAMNet memory to be read 
from. Since this is a local address, SCRAMNet memory starts at ‘0’. 
ULONG num_bytes -  This is the number of longwords to READ from SCRAMNet 
memory into the destination memory buffer. 

RETURNS 
Returns a ‘0’ if successful, or ‘-1’ if an error has occurred. 

ERROR 
scr_dma_read() will fail if: 

− DMA transfer size too large. The maximum transfer size will depend on the system 
page size and continuous nature of the user memory buffer. A 512 K or smaller DMA 
transfer should always be possible. 

− The DMA transaction timed out after one second. 
 



INTERFACE ROUTINES 

 Copyright 2000 5-57 NT DLL REFERENCE GUIDE 
 

5.7.3 scr_dma_write() - DMA WRITE into SCRAMNet Memory (PCI Only) 

SYNOPSIS 
#include <scrhwd.h>
int scr_dma_write( PVOID user_addr, ULONG scr_offset, ULONG
num_bytes )

DESCRIPTION 
This routine uses the SCRAMNet+ PCI DMA capability to WRITE from a user memory 
buffer into SCRAMNet memory. 

ARGUMENTS 
PVOID user_addr -  This is the starting address of the user memory buffer that is the 

source of the data to be written into SCRAMNet memory. 
ULONG scr_offset -  This is the offset address into SCRAMNet memory to be 

written to. Since this is a local address, SCRAMNet memory 
starts at ‘0’. 

ULONG num_bytes -  This is the number of longwords to WRITE from the memory 
buffer into SCRAMNet memory. 

RETURNS 
Returns a ‘0’ if successful, or ‘-1’ if an error has occurred. 

ERROR 
scr_dma_write() will fail if: 

− DMA transfer size too large. The maximum transfer size will depend on the system 
page size and continuous nature of the user memory buffer. A 512 K or smaller DMA 
transfer should always be possible. 

− The DMA transaction timed out after one second. 
 



INTERFACE ROUTINES 

 Copyright 2000 5-58 NT DLL REFERENCE GUIDE 
 

5.8 General Routines 

5.8.1 scr_csr_read() - READ Registers 

SYNOPSIS 
#include <scrplus.h>
unsigned short scr_csr_read( unsigned int csr_number );

DESCRIPTION 
The scr_csr_read() function will READ the Control/Status register (CSR) and return 
the value read. This function interfaces with the hardware dependent portion of the 
libraries to determine exactly how to access these registers. The number of accessible 
CSRs depends upon the SCRAMNet model ( Classic or LX/+ ). Definitions of the bit 
functions for each CSR are provided in the header files as well as in the hardware 
documentation. 

This routine will not function until SCRAMNet CSRs have been mapped. 

ARGUMENTS 
The csr_number parameter is the number of the CSR to be read, as in the following 
example:  

unsigned short csr_val; 
csr_val  = scr_csr_read( SCR_CSR0 ); 

CSR numbers are defined in the header files. The definitions are actually the number 
of the CSR itself.  

RETURNS 
Returns a value read from the specified CSR.  

ERROR 
scr_csr_read will fail if: 

- CSRs have not yet been mapped. 
- An invalid CSR number was passed by csr_number parameter. 



INTERFACE ROUTINES 

 Copyright 2000 5-59 NT DLL REFERENCE GUIDE 
 

5.8.2 scr_csr_write() - WRITE Registers  

SYNOPSIS 
#include <scrplus.h>
void scr_csr_write( unsigned int csr_number, unsigned short
value );

DESCRIPTION 
The scr_csr_write() routine will WRITE the Control/Status register (CSR) specified 
by csr_number with the value given. This routine interfaces with the hardware 
dependent portion of the libraries to determine exactly how to access these registers. 
The number of accessible CSRs depends upon the SCRAMNet model (Classic or 
LX/+). Definitions of the bit functions for each CSR are provided in the header files 
as well as in the hardware documentation. 

This routine will not function until SCRAMNet CSRs have been mapped. 

ARGUMENTS 
The csr_number parameter is the number of the CSR to be written, as in the 
following example:  

unsigned short csr_val = 8003 hex;
scr_csr_write( SCR_CSR0, csr_val );

CSR numbers are defined in the header files. The definitions are actually the number 
of the CSR itself. 

RETURNS 
None 

ERROR 
scr_csr_write will fail if: 

- CSRs have not yet been mapped. 
- An invalid CSR number was passed by csr_number parameter. 



INTERFACE ROUTINES 

 Copyright 2000 5-60 NT DLL REFERENCE GUIDE 
 

5.8.3 scr_error_mm() - Network Error Display 

SYNOPSIS 
#include <scrplus.h>
void scr_error_mm ( FILE *ofd,unsigned short int tmp_csr
);

DESCRIPTION 
scr_error_mm() receives the contents of CSR1 and displays an appropriate error 
message to explain the error. The output message is displayed to the screen by default 
and may be sent to a file pointer to ofd. If ofd is equal to a NULL, output is only 
displayed on the screen. Otherwise, output is sent to the file pointed to by ofd after 
being displayed on the screen. 

ARGUMENTS 
Valid cmd arguments to scr_error_mm() are (FILE *)ofd and (unsigned short 
int)tmp_csr. Valid values of ofd must either be a valid file pointer or NULL if 
output is not to be sent to a file. The argument tmp_csr must contain the contents of 
CSR1. 

RETURNS 
Void. 

ERROR 
scr_error_mm() will fail if: 

- Control status registers were not mapped. 
- If the ofd file pointer is not properly declared as a file pointer or equal to NULL. 



INTERFACE ROUTINES 

 Copyright 2000 5-61 NT DLL REFERENCE GUIDE 
 

EXAMPLE SCR_ERROR_MM IN FILE SCR_ERROR_EX.C 
This program maps CSRs and then uses scr_error_mm() to check CSR1 for errors. If 
any errors are found, scr_error_mm() will display the appropriate error message. 
SCRAMNet registers are released before program termination. Please note that the 
file pointer parameter for scr_error_mm() is a NULL. In this case, output is displayed 
only on the screen. 

#include <stdio.h>
#include <stdlib.h>
#include <scrplus.h>

/* the pointer that will be set by the scr_reg_mm() */
extern unsigned short int * scr_reg_ptr;
extern unsigned long int * scr_reg_mm();

main( )
{
struct scr_device *dp;

/* map SCRAMNet CSRs and set the global pointer to the base */
if( scr_reg_mm( MAP ) != 0 ) {

printf(“Could not map SCRAMNet CSRs”);
exit( 0 ); }

/* display message of error register CSR1 */
scr_error_mm( NULL, scr_csr_read(SCR_CSR1));

/* unmap SCRAMNet CSRs before termination */
if( scr_reg_mm( UNMAP ) != 0 ) {

printf(“Could not unmap SCRAMNet CSRs”);
exit( 0 ); }

}

 



INTERFACE ROUTINES 

 Copyright 2000 5-62 NT DLL REFERENCE GUIDE 
 

5.8.4 scr_fifo_mm() - Reset FIFOs/READ Status 

SYNOPSIS 
#include <scrplus.h>
void scr_fifo_mm( int cmd, struct rd_fifo *ptr );

DESCRIPTION 
scr_fifo_mm() allows the user to reset the shared memory, interrupt and 
transmit/receive FIFO or READ the status register CSR1. See the scr.h file in your 
software package for a prototype of the structure rd_fifo. 

The reset FIFO control bits in CSR0 include: 

 CSR0[12] - Transmit/Receive FIFO 
 CSR0[13] - Interrupt FIFO 
 CSR0[14] - Shared Memory FIFO 

In case of reading the Status register the bits include: 

 CSR1[0] - SM FIFO Full  
 CSR1[1] - SM FIFO Not Empty 
 CSR1[2] - SM FIFO Half Full 
 CSR1[3] - T/R FIFO Full 
 CSR1[4] - Interrupt FIFO Full 
 CSR1[5] - SM FIFO Skew 
 CSR1[6] - Carrier Detect 
 CSR1[7] - Bad Byte 
 CSR1[8] - Receiver Overflow 

ARGUMENTS 
Valid cmd arguments to scr_fifo_mm() are RST_FIFO to reset one of three FIFO’s 
or RD_FIFO status via CSR1. 

RETURNS 
Void. 

ERROR 
scr_fifo_mm() will fail if: 

- Control status registers were not mapped. 
 



INTERFACE ROUTINES 

 Copyright 2000 5-63 NT DLL REFERENCE GUIDE 
 

EXAMPLE SCR_FIFO_MM IN FILE SCR_FIFO_EX.C 
This program READs the status of the FIFO buffers and checks the shared memory 
FIFO full flag as an example. If the structure member is equal to one, the condition 
exists. The next line resets all of the FIFOs. The structure rd_fifo is found in scr.h 
and explains what conditions are available other than the one in this example. 

#include <stdio.h>
#include <scrplus.h>

extern void scr_fifo_mm( );

main( )
{
struct rd_fifo ptr;

/* map SCRAMNet registers */
scr_reg_mm( MAP );

/* READs the status of the FIFOs and places status in structure
ptr */

scr_fifo_mm( RD_FIFO, &ptr );

/* As an example, check to see if shared memory FIFO is half
full */
if( ptr.smfhf == 1 ) {

printf(“Shared Memory FIFO is half FULL”); }

/* all FIFOs are reset here structure in ptr is unchanged
during reset operation. */

scr_fifo_mm( RST_FIFO, &ptr );

/* unmap SCRAMNet registers before termination */
scr_reg_mm( UNMAP );

}

 



INTERFACE ROUTINES 

 Copyright 2000 5-64 NT DLL REFERENCE GUIDE 
 

5.8.5 scr_fswin_mm() - Check for Fiber Optic Switch 

SYNOPSIS 
#include <scrplus.h>
int scr_fswin_mm( void );

DESCRIPTION 
scr_fswin_mm() checks the state of the “Fiber Optic Bypass Not Connected” bit in 
CSR1. The status of this bit is reflected in the return value of the function call. 

ARGUMENTS 
None. 

RETURNS 
Returns a value of ‘0’ if the switch is not present, or a ‘1’ if the switch is present. 

ERROR 
scr_fswin_mm() will fail if: 

- Control/status registers were not mapped. 
 



INTERFACE ROUTINES 

 Copyright 2000 5-65 NT DLL REFERENCE GUIDE 
 

EXAMPLE SCR_FSWIN_MM  
This program maps the CSRs so that scr_fswin_mm() will have them available. CSRs 
are unmapped before program termination. 

#include <scrplus.h>

main( )
{

/* map SCRAMNet registers, set the global pointer to the base */
scr_reg_mm( MAP );

/* Check SCRAMNet By-Pass Switch */
if (scr_fswin_mm( ) == 1)

printf("\n Fiber Optic By-Pass switch present.");
else

printf("\n Fiber Optic By-Pass switch NOT present.");

/* unmap SCRAMNet registers before termination */
scr_reg_mm( UNMAP );
}

 
 



INTERFACE ROUTINES 

 Copyright 2000 5-66 NT DLL REFERENCE GUIDE 
 

5.8.6 scr_id_mm() - READ Node Identification 

SYNOPSIS 
#include <scrplus.h>
void scr_id_mm( char *id, char *cnt );

DESCRIPTION 
scr_id_mm() returns the node ID of the node on the network ring, and the total 
number of nodes in the network ring. The node ID and the total node count ranges 
from 0 - 255. 

The number of nodes on the network ring is valid only when the host node has 
successfully transmitted at least one message around the ring. 

This is general information and may be used by the user as host system identification. 

ARGUMENTS 
Two character pointers are passed, id and cnt. The pointer id will contain the node 
ID number of the node executing the command. The pointer cnt will contain the 
number of nodes in the current ring. 

RETURNS 
A value is not returned; but this routine sets passed pointer variables to correct 
values. 

ERROR 
scr_id_mm() will fail if: 

- Control status registers were not mapped. 
 



INTERFACE ROUTINES 

 Copyright 2000 5-67 NT DLL REFERENCE GUIDE 
 

EXAMPLE SCR_ID_MM IN FILE SCR_ID_EX.C 
This program first sends a message around the network by setting a variable. Since 
the data filters are not active immediately after a reset, this will generate a network 
update message. Next the scr_id_mm() routine is used to find, then display, the node 
ID and total node count. 

#include <stdio.h>
#include <scrplus.h>

/* the pointers set by scr_reg_mm() and scr_mem_mm()*/
extern unsigned short int * scr_reg_ptr;
extern unsigned long int * scr_vmem_ptrs;

extern long int scr_mem_mm( ), scr_reg_mm( );
extern void scr_id_mm( );
main( )
{
unsigned char cnt, id;
short int *mem_ptr;
struct scr_device *dp;

/* map SCRAMNet memory and registers */
scr_mem_mm( MAP );
scr_reg_mm( MAP );

/* reset SCRAMNet board */
scr_reset_mm( );

/* initialize memory pointer and send one message */
mem_ptr = get_base_mem( );

/* insert node into the network */
scr_csr_write(SCR_CSR0,0x8003);

/* transmit message to get node number count */
*mem_ptr = 0;

/* get the node id and node count */
scr_id_mm( &id, &cnt );

/* Display the node id and total node count */
printf(“\nThe id of this node is %u or in hex %x\n\
The number of active nodes in the network is %u\n”, id, id, cnt );

/* unmap SCRAMNet memory and registers before termination */
scr_mem_mm( UNMAP );
scr_reg_mm( UNMAP );
}

 



INTERFACE ROUTINES 

 Copyright 2000 5-68 NT DLL REFERENCE GUIDE 
 

5.8.7 scr_load_mm() - READ File to Load ACR / RAM 

SYNOPSIS 
#include <scrplus.h>
void scr_load_mm ( char *strptr, int cmd );

DESCRIPTION 
scr_load_mm() READs the disk file specified by the character string at pointer 
strptr. On successful file access, the contents of the file are loaded into the 
SCRAMNet shared memory or the Auxiliary Control RAM according to cmd. 

This routine permits easy reconfiguration of the SCRAMNet Host Node to different 
modes from a selection of predetermined files and is complementary to 
scr_save_mm(). 

This routine also allows reloading of the entire SCRAMNet memory, or the entire 
SCRAMNet interrupt scheme as defined in the ACR, or both. 

ARGUMENTS 
Valid cmd arguments to scr_load_mm() are MEM or ACR, depending on what it is 
the user wishes to reload. Strptr is a null-terminated string that contains the file 
name. 

RETURNS 
Void. 

ERROR 
scr_load_mm() will fail if: 

- Control status registers were not mapped. 
- Shared memory was not mapped. 
- File could not be opened. 
- File READ error occurred. 
- Illegal memory mapping was attempted. 



INTERFACE ROUTINES 

 Copyright 2000 5-69 NT DLL REFERENCE GUIDE 
 

EXAMPLE SCR_LOAD_MM IN FILE SCR_LOAD_EX.C 
This program first gets the name of the file to be read, then uses scr_load_mm() to 
open the file and read the contents of the file into SCRAMNet RAM.  

 

 

#include <stdio.h>
#include <scrplus.h>

extern void scr_load_mm( );

main( )
{
char str[20];

/* map SCRAMNet memory and registers */
scr_mem_mm( MAP );
scr_reg_mm( MAP );

/* reset SCRAMNet board */
scr_reset_mm( );

/* read the file name, then the file contents into SCRAMNet
RAM */

printf(“\nPlease enter the filename to read into SCRAMNet RAM:
“);
gets( str );
scr_load_mm( str, MEM );

/* unmap SCRAMNet memory and registers before termination */
scr_mem_mm( UNMAP );
scr_reg_mm( UNMAP );
}

 
 
 



INTERFACE ROUTINES 

 Copyright 2000 5-70 NT DLL REFERENCE GUIDE 
 

5.8.8 scr_mclr_mm() - Clear ACR / RAM 

SYNOPSIS 
#include <scrplus.h>
void scr_mclr_mm( int arg );

DESCRIPTION 
scr_mclr_mm() zeroes all of shared memory segment mapped for SCRAMNet. This 
routine also initializes the SCRAMNet Network Node to a clear memory condition 
such that there is always a standard starting point for new applications. 

scr_mclr_mm() supports the option to either clear contents of the entire SCRAMNet 
memory or to clear or zero out the contents of the entire SCRAMNet Auxiliary 
Control RAM (ACR). 

ARGUMENTS 
Valid cmd arguments to scr_mclr_mm() are ACR or MEM depending on what needs 
to be zeroed out. 

RETURNS 
Void. 

ERROR 
scr_mclr_mm() will fail if: 

- Control/status registers were not mapped. 
 



INTERFACE ROUTINES 

 Copyright 2000 5-71 NT DLL REFERENCE GUIDE 
 

EXAMPLE SCR_MCLR_MM IN FILE SCR_MCLR_EX.C 
This program first maps CSRs and then clears the ACR and SCRAMNet RAM. The 
board is reset before and after clearing to make sure there is nothing in FIFO’s when 
finished. 

#include <scrplus.h>

extern void scr_mclr_mm( );

main( )
{

/* Mapping SCRAMNet RAM and registers */
scr_mem_mm( MAP );
scr_reg_mm( MAP );

/* reset SCRAMNet board */
scr_reset_mm( );

/* clear ACR and SCRAMNet RAM */
scr_mclr_mm( ACR );
scr_mclr_mm( MEM );

/* reset SCRAMNet board */
scr_reset_mm( );

/* unmap SCRAMNet registers before termination */
scr_reg_mm( UNMAP );
scr_reg_mm( UNMAP );
}



INTERFACE ROUTINES 

 Copyright 2000 5-72 NT DLL REFERENCE GUIDE 
 

5.8.9 scr_read_int_fifo() - READ Interrupt FIFO CSRs 

SYNOPSIS 
#include <scrplus.h>
int scr_read_int_fifo( unsigned long int *fifo_value );

DESCRIPTION 
scr_read_int_fifo() READs the first value in the interrupt FIFO. This value is found 
by reading CSR4 and CSR5. The value read is written to the fifo_value parameter. 
The return status will indicate whether the FIFO was empty or not. This tells whether 
the value read from CSR4 and CSR5 is valid or not. 

ARGUMENTS 
Valid argument to scr_read_int_fifo() is a pointer to an unsigned long int in which 
this routine will WRITE the value found in the interrupt FIFO. 

RETURNS 
Returns a value indicating whether or not the interrupt FIFO was empty when read. 

ERROR 
scr_read_int_fifo() will fail if: 

- Control status registers were not mapped. 
 



INTERFACE ROUTINES 

 Copyright 2000 5-73 NT DLL REFERENCE GUIDE 
 

EXAMPLE SCR_READ_INT_FIFO 
This program maps the CSRs so that scr_read_int_fifo() will have them available, 
then calls scr_read_int_fifo(). CSRs are unmapped before program termination. 

#include <scrplus.h>

main( )
{

unsigned long fifo_entry;

/* map SCRAMNet registers, set the global pointer to the base */
scr_reg_mm( MAP );

/* read SCRAMNet interrupt FIFO */
if (scr_read_int_fifo(&fifo_entry ) == TRUE)

printf("\n Current Interrupt FIFO entry: %lx",fifo_entry);
else

printf("\n Interrupt FIFO is empty");

/* unmap SCRAMNet registers before termination */
scr_reg_mm( UNMAP );
}

 
 



INTERFACE ROUTINES 

 Copyright 2000 5-74 NT DLL REFERENCE GUIDE 
 

5.8.10 scr_rw_mm() - READ / WRITE / Modify Registers 

SYNOPSIS 
#include <scrplus.h>
extern void
scr_rw_mm( operation )
struct rw_scr *operation;

DESCRIPTION 
scr_rw_mm() READs, WRITEs, or modifies one of the SCRAMNet Control Status 
Registers (CSRs) based on the operation structure defined by struct rw_scr below. 

ARGUMENTS 
Structure of type rw_scr. The rw_scr structure is defined as: 

struct rw_scr { 
 char rw_flag; 
 char csr_reg; 
 short int csr_arg;   }; 
Valid rw_flag options are: 
 REG_RD   - Register READ 
 REG_WRT  - Register Write 
 REG_MDFY - Register Modify 
Valid csr_reg options are: 
 SCR_CSR0 -  SCRAMNet CSR 0 
 SCR_CSR1 -  SCRAMNet CSR 1 
 SCR_CSR2 -  SCRAMNet CSR 2 
 SCR_CSR3 -  SCRAMNet CSR 3 
 SCR_CSR4 -  SCRAMNet CSR 4 
 SCR_CSR5 -  SCRAMNet CSR 5 
 SCR_CSR6 -  SCRAMNet CSR 6 
Valid csr_arg options are: 
 short int value to be written to appropriate CSR if rw_flag == REG_WRT.  
 Otherwise, rw_flag == REG_MDFY, appropriate CSR is OR’ed with csr_arg.  

RETURNS 
If READ operation, csr_arg will contain the appropriate register value. 

ERROR 
scr_rw_mm() will fail if: 

- Control/status registers were not mapped. 
- Illegal register number. 
- WRITE or modify attempted on a READ-only register. 



INTERFACE ROUTINES 

 Copyright 2000 5-75 NT DLL REFERENCE GUIDE 
 

EXAMPLE SCR_RW_MM IN FILE SCR_RW_EX.C 
This program maps the CSRs then sets CSR0 to ‘0x8003’ to begin basic network 
participation. Then CSR1 is read and checked to see if Transmit FIFO is full.  
Registers are then unmapped. 

#include <stdio.h>
#include <scrplus.h>

extern void scr_rw_mm( );

main( )
{
struct rw_scr temp;

/* Mapping SCRAMNet registers */
scr_reg_mm( MAP );

/* set CSR0 to 0x8003 to enable network participation */
temp.rw_flag = REG_WRT;
temp.csr_reg = SCR_CSR0;
temp.csr_arg = 0x8003;
scr_rw_mm( &temp );

/* check CSR1 to see if Transmit FIFO is full, bit 1 = 1 */
temp.rw_flag = REG_RD;
temp.csr_reg = SCR_CSR1;
scr_rw_mm( &temp );

if( (temp.csr_arg & 0x01) == 0x01 )
printf(“Transmit FIFO is FULL\n”);

else
printf(“Transmit FIFO is not FULL\n”);

/* unmap SCRAMNet registers before termination */
scr_reg_mm( UNMAP );
}

 



INTERFACE ROUTINES 

 Copyright 2000 5-76 NT DLL REFERENCE GUIDE 
 

5.8.11 scr_save_mm() - Save ACR or RAM Contents to File 

SYNOPSIS 
#include <scrplus.h>
extern void
scr_save_mm( strptr, cmd )
char *strptr;
int cmd;

DESCRIPTION 
scr_save_mm() WRITEs to the disk file specified by the character string at pointer 
strptr. On successful file access, the contents of SCRAMNet shared memory or the 
contents of the Auxiliary Control RAM are written into the file. 

This routine permits easy reconfiguration of the SCRAMNet Host Node to different 
modes from a selection of predetermined files and is complementary to 
scr_load_mm(). 

This routine also allows saving of the entire SCRAMNet memory, or the entire 
SCRAMNet interrupt scheme as defined in the ACR, or both. 

ARGUMENTS 
Valid cmd arguments to scr_save_mm() are MEM or ACR, depending on what 
needs to be reloaded.   

RETURNS 
Void. 

ERROR 
scr_save_mm() will fail if: 

- Control/status registers were not mapped. 
- Shared memory was not mapped. 
- File could not be opened. 

 



INTERFACE ROUTINES 

 Copyright 2000 5-77 NT DLL REFERENCE GUIDE 
 

EXAMPLE SCR_SAVE_MM IN FILE SCR_SAVE_EX.C 
This program first gets the filename to hold the contents of SCRAMNet RAM, then 
uses scr_save_mm( ) to open the file and WRITE the contents of SCRAMNet RAM 
into that file. 

 

 

#include <stdio.h>
#include <scrplus.h>

extern scr_save_mm( );

main( )
{
char str[20];

/* map SCRAMNet memory and registers */
scr_mem_mm( MAP );
scr_reg_mm( MAP );

/* reset SCRAMNet board */
scr_reset_mm( );

/* get the file name to save in, and save contents of SCRAMNet
RAM */

printf(“\nPlease enter the filename to save SCRAMNet RAM in: “);
gets( str );
scr_save_mm( str, MEM );

/* unmap SCRAMNet memory and registers before termination */
scr_mem_mm( UNMAP );
scr_reg_mm( UNMAP );
}

 
 
 



INTERFACE ROUTINES 

 Copyright 2000 5-78 NT DLL REFERENCE GUIDE 
 

5.8.12 scr_smem_mm() - Set ACR / RAM to Pattern 

SYNOPSIS 
#include <scrplus.h>
extern void
scr_smem_mm( arg, value )
int arg;
unsigned long value;

DESCRIPTION 
scr_smem_mm() will set SCRAMNet memory or the SCRAMNet Auxiliary Control 
RAM (ACR) to the value supplied by the value argument field. The value field is set 
throughout SCRAMNet memory or ACR. 

This feature is convenient when it is necessary to set entire SCRAMNet memory or 
the ACR to one particular value. For instance, in the case of the ACR, this function is 
useful when it is necessary to set all the memory to enable-interrupt on receipt of a 
new data. 

ARGUMENTS 
Valid arguments to scr_smem_mm() are MEM or ACR depending on whether the 
user wishes to set a value to entire SCRAMNet memory or the ACR.  

RETURNS 
Void. 

ERROR 
scr_smem_mm() will fail if: 

- Control/status registers were not mapped. 
- Memory was not mapped. 
- TRANSMIT FIFO FULL error condition will cause this routine to “hang” 

waiting for the FIFO to empty itself. There must be some loopback to ensure that 
the FIFO has a path to empty itself. 

  



INTERFACE ROUTINES 

 Copyright 2000 5-79 NT DLL REFERENCE GUIDE 
 

EXAMPLE SCR_SMEM_MM IN FILE SCR_SMEM_EX.C 
This program first maps memory and registers. Then memory and ACR are both set 
to certain values using scr_smem_mm( ). Note that the Transmit FIFO requires a path 
to empty itself. There must be a loopback path of some type, either a wire loopback 
or a fiber optic loopback. If no carrier, then default is wire. Then the node is inserted 
and will use the appropriate loopback if installed. If the Transmit FIFO fills, the 
library routine scr_smem_mm() will “hang” until it is no longer full. Finally, RAM 
and CSRs are unmapped. 

#include <stdio.h>
#include <stdlib.h>
#include <scrplus.h>

/* the pointers set by scr_mem_mm() and scr_reg_mm() */
extern unsigned short int * scr_reg_ptr;
extern void scr_smem_mm( );
extern long int scr_mem_mm( ), scr_reg_mm( );

main( )
{
struct scr_device *dp;

/* map SCRAMNet memory and registers */
scr_mem_mm( MAP );
scr_reg_mm( MAP );

/* if no carrier, operate in wire loopback */
if(scr_csr_read(SCR_CSR1) & 0x0040 )
scr_csr_write(SCR_CSR2,0x0080);
scr_csr_write(SCR_CSR0,0x8003;

/* clear SCRAMNet RAM */
scr_smem_mm( MEM, 0 );

/* set interrupts to transmit for all of SCRAMNet RAM */
scr_smem_mm( ACR, 0x1 );

/* if no carrier, disable wire loopback */
if(scr_csr_read(SCR_CSR1) & 0x0040 ) scr_csr_write(SCR_CSR2,0);

/* unmap SCRAMNet memory and registers before termination */
scr_mem_mm( UNMAP );
scr_reg_mm( UNMAP );
}

 



INTERFACE ROUTINES 

 Copyright 2000 5-80 NT DLL REFERENCE GUIDE 
 

5.8.13 sp_bist_rd() - READ BIST Data  

SYNOPSIS 
#include <scrplus.h>
int sp_bist_rd ( int* bitstream )

DESCRIPTION 
This routine will READ the SCRAMNet LX ASIC built-in self-test data from CSR9 
and stores it in the bitstream parameter. Any operations, including incoming 
network traffic, will disturb this number.  

 
This routine does not work on a SCRAMNet Classic board. 

ARGUMENTS 
On return the bitstream argument will contain the built-in self-test data. The 
bitstream argument must be allocated enough space to hold 23 bytes of data. 

RETURNS 
Returns a ‘0’ if successful, or a ‘-1’ if an error has occurred. 

ERROR 
sp_bist_rd() will fail if: 

- The SCRAMNet registers are not mapped. 
- This routine is called using a SCRAMNet Classic Board. 



INTERFACE ROUTINES 

 Copyright 2000 5-81 NT DLL REFERENCE GUIDE 
 

5.8.14 sp_mem_size() - Get Hardware Memory Size 

SYNOPSIS 
#include <scrplus.h>
unsigned long sp_mem_size ( void )

DESCRIPTION 
This routine will READ the memory size code from CSR8 and return the memory 
size in bytes.  
 
This routine does not work on a SCRAMNet Classic board. 

ARGUMENTS 
None. 

RETURNS 
Returns the SCRAMNet memory size in bytes if successful, or a ‘0’ if an error has 
occurred. 

ERROR 
sp_mem_size() will fail if: 

- The SCRAMNet registers are not mapped. 
- This routine is called using a SCRAMNet Classic Board. 

 



INTERFACE ROUTINES 

 Copyright 2000 5-82 NT DLL REFERENCE GUIDE 
 

5.8.15 sp_msg_life() - Pre-Age Network Messages 

SYNOPSIS 
#include <scrplus.h>
int sp_msg_life ( unsigned hops )

DESCRIPTION 
The sp_msg_life routine allows network messages to be pre-aged. Normally, a node 
sends messages to the network with an age of 0, then each node visited increments 
this age field by 1. When the age field reaches a value of 255, the message is 
removed from the network. The maximum number of nodes visited can be specified 
by passing this number to the routine. This routine should only be used when 
operating the network with BURST (or BURST+) mode protocols because other 
protocols expect to receive their own message. Note that a message will also be 
removed from the network if it is received by a node with a receiver ID that matches 
the ID field of the message (set with the value of the Transmit ID of the sender).  
 
This routine does not work on a SCRAMNet Classic board. 

ARGUMENTS 
The hops argument should be set to the value of the number of node-hops the 
message will take before being removed from the network. For example, if a node 
wants to send the message only to its immediate neighbor, hops would be set to ‘1’. 

RETURNS 
Returns the previous value passed as hops if successful, or a ‘-1’ if an error has 
occurred. 

ERROR 
sp_plus_find() will fail if: 

- The SCRAMNet registers are not mapped. 
- A value of ‘0’ or a value > ‘255’ is passed for hops. 
- This routine is called using a SCRAMNet Classic Board. 

  



INTERFACE ROUTINES 

 Copyright 2000 5-83 NT DLL REFERENCE GUIDE 
 

5.8.16 sp_net_to() - Set Network Time-out Value 

SYNOPSIS 
#include <scrplus.h> 
 
int sp_net_to ( unsigned short time-out ) 

DESCRIPTION 
This routine will set the Network Time-out value for the SCRAMNet LX node by 
writing the passed value to CSR5. The recommended formula for calculating network 
time-out value is: 

 
#NODES + (TOTAL CABLE LENGTH OF RING IN METERS / 50) + 1 
 
This routine does not work on a SCRAMNet Classic board. 

ARGUMENTS 
time-out - should be passed as the value to set as the network time-out value. 

RETURNS 
Returns a ‘0’ if successful, or a ‘-1’ if an error has occurred. 

ERROR 
sp_net_to() will fail if: 

- The SCRAMNet registers are not mapped. 
- This routine is called using a SCRAMNet Classic Board. 



INTERFACE ROUTINES 

 Copyright 2000 5-84 NT DLL REFERENCE GUIDE 
 

5.8.17 sp_protocol() - Set Network Protocol 

SYNOPSIS 
#include <scrplus.h>
int sp_protocol ( unsigned ProtocolMode )

DESCRIPTION 
This routine will set the protocol mode for sending network messages. See the 
Software Reference Manual for specific information about which protocols are 
available on a particular host system. 

ARGUMENTS 
ProtocolMode - should be passed as the constant for the desired protocol. These 
constants are found in scrplus.h and are defined as follows: 

BURST - use the Burst Network Protocol 
BURST_PLUS -  use the Burst Plus Network Protocol 
PLATINUM -  use the Platinum Network Protocol 
PLATINUM_PLUS - use the Platinum Plus Network Protocol 
GOLD - use the Gold Network Protocol 
SCRAMNet Classic boards do not support PLATINUM Network Protocol mode or 
any of the Plus protocols. SCRAMNet LX/+ does not support GOLD Network 
Protocol mode. 

RETURNS 
Returns the previous Network Protocol constant if successful, or a ‘-1’ if an error has 
occurred. 

ERROR 
sp_protocol() will fail if: 

- The SCRAMNet registers are not mapped. 
- An invalid value is passed as ProtocolMode. 

 
 



INTERFACE ROUTINES 

 Copyright 2000 5-85 NT DLL REFERENCE GUIDE 
 

5.8.18 sp_rx_id() - Set Receive ID 

SYNOPSIS 
#include <scrplus.h>
int sp_rx_id ( unsigned char NewID )

DESCRIPTION 
This routine will set the Receiver ID of the node. The node will not remove its own 
messages if its Transmit ID is different that its Receiver ID. Each node will remove 
those messages with an ID that matches the Receiver ID of the receiving node.  
 
This routine will only work on SCRAMNet LX/+ boards and is accomplished by 
writing to CSR3. 

ARGUMENTS 
The Receiver ID is set to the value passed as NewID. The valid range for this value is 
0-255. 

RETURNS 
Returns the previous Receiver ID if successful, or a ‘-1’ if an error has occurred. 

ERROR 
sp_rx_id() will fail if: 

- The SCRAMNet registers are not mapped. 
- This routine is called using a SCRAMNet Classic board. 

  



INTERFACE ROUTINES 

 Copyright 2000 5-86 NT DLL REFERENCE GUIDE 
 

5.8.19 sp_set_cntr() - Set General Purpose Counter Mode 

SYNOPSIS 
#include <scrplus.h>
int sp_set_cntr ( int mode )

DESCRIPTION 
The sp_set_cntr routine allows the general-purpose counter mode to be selected. 
Reading CSR13 retrieves the value of the counter. There are several modes that can 
be selected as specified by the mode argument. The routine selects these modes by 
setting bits in CSR8 and CSR9. This routine will clear the value of the counter by 
writing a ‘0’ to CSR13. 

The counter/timer functionality is not supported for SCRAMNet Classic boards. 

ARGUMENTS 
The mode argument determines the timer/counter mode in effect. The constants used 
to specify the mode parameter are defined in scrplus.h, and their effect is as follows: 

CNTR_ERRORS - Count Errors. The counter will be incremented every 
time a SCRAMNet error occurs. 

CNTR_TRIG - Count Triggers. The counter will be incremented every 
time a Trigger 1 or Trigger 2 occurs. 

CNTR_TRANSIT - Transmit Time. When this mode is set the counter will 
begin counting when the next message is transmitted and 
stop counting when any messages generated by this node 
is received. 

CNTR_NET_EVENTS - Network Events. This mode will count incoming 
network messages. 

CNTR_FREERUN - Free Run @ 26.66 ns. This mode will increment the 
counter using an internal 37.5 MHz clock. Counter will 
roll over every 1.748 ms. 

CNTR_FREERUN_T2 - Free Run @ 1.706 µs with Trigger 2 clear. This mode 
will increment the counter using 585.9 KHz clock. 
Counter will roll over every 111.8 ms. The assertion of 
Trigger 2 will clear the counter. 

RETURNS 
Returns a ‘0’ if successful, or a ‘-1’ if the mode value is invalid. 

ERROR 
sp_set_cntr() will fail if: 

- The SCRAMNet registers are not mapped. 
- This routine is called using a SCRAMNet Classic Board. 



INTERFACE ROUTINES 

 Copyright 2000 5-87 NT DLL REFERENCE GUIDE 
 

5.8.20 sp_set_sm_addr() - Set Physical Memory Address 

SYNOPSIS 
#include <scrplus.h>
int sp_set_sm_addr ( unsigned long addr )

DESCRIPTION 
This routine will set the SCRAMNet physical address in CSRs 10 and 11 and set the 
Shared Memory Access Enable bit in CSR10. After this routine is called with a valid 
address, the SCRAMNet shared memory is available for access. The serial EEPROM 
can be programmed to pre-load the correct address upon power-up. See the 
Hardware Reference Manual for more details on the SCRAMNet Memory Address. 

 
This routine does not apply to PCI, EISA, and ISA boards. 
 
This routine does not work on the SCRAMNet Classic board. 

ARGUMENTS 
The addr argument is the physical address of SCRAMNet memory. The address 
must be “open” on the system address bus (i.e. no conflicts with the other memory). 
The value of the address must be on an even memory size boundary with the amount 
of shared memory contained on the SCRAMNet device (i.e. a 128 KB SCRAMNet 
product can only be mapped on a multiple of a 0x0002 0000 boundary). 

RETURNS 
Returns a ‘0’ if successful, or a ‘-1’ if an error has occurred. 

ERROR 
sp_set_sm_addr() will fail if: 

- The SCRAMNet registers are not mapped. 
- This routine is called using a SCRAMNet Classic board. 



INTERFACE ROUTINES 

 Copyright 2000 5-88 NT DLL REFERENCE GUIDE 
 

5.8.21 sp_set_vp() - Set Virtual Page Number 

SYNOPSIS 
#include <scrplus.h>
int sp_set_vp ( int request, unsigned pagenumber )

DESCRIPTION 
This routine can be used to set, clear, or READ the virtual page number. 

ARGUMENTS 
The request argument can be passed as the following: 

VP_SET - This tells the routine to enable virtual paging and to set 
the virtual page to the value of the pagenumber 
argument. 

VP_READ - READs and returns the virtual page if virtual paging was 
enabled. 

VP_RESET - This will disable virtual paging and clears the virtual 
page number. 

The value of the pagenumber argument is only relevant if the request argument is 
VP_SET in which case it is used to set the virtual page number. The valid range for 
pagenumber is dependent on the on-board memory size as follows: 

valid virtual page range = (0..(8 M/on-board memory size) - 1). 

On-board Memory Virtual Page Range 
 4 K (0..2047) 
 128 K (0..63) 
 512 K (0..15) 
 1 M (0..7) 
 2 M (0..3) 
 8 M (0) 

RETURNS 
Returns one of the following values for a successful call, depending on the request 
argument: 

VP_SET - returns the value of the virtual page register after setting it. 
VP_READ - returns the value of the virtual page register. 
VP_RESET - returns the value of the virtual page register after clearing it  
  (should be 0). 

Returns a ‘-1’ if an error has occurred. 

ERROR 
sp_set_vp() will fail if: 

- The SCRAMNet registers are not mapped. 
- This routine is called using a SCRAMNet Classic board. 
- The request argument is invalid. 
- The request argument is VP_SET and the pagenumber argument is invalid. 



INTERFACE ROUTINES 

 Copyright 2000 5-89 NT DLL REFERENCE GUIDE 
 

5.8.22 sp_txrx_id() - Set Transmit / Receive Node ID 

SYNOPSIS 
#include <scrplus.h>
int sp_txrx_id ( unsigned char NewID )

DESCRIPTION 
This routine will set both the Transmit and Receiver ID of the node. This will result 
in the node removing any of its own messages from the network when received. If 
the Receiver ID is set to be different from the Transmit ID (through sp_rx_id()) then 
the node will not remove its own messages, but only those messages with an ID that 
matches the Receiver ID of the receiving node.  
 
This routine will only work on SCRAMNet LX/+ boards and is accomplished by 
writing to CSR3. 

ARGUMENTS 
The Transmit and Receive ID is set to the value passed as NewID. The valid range 
for this value is 0-255. 

RETURNS 
Returns the previous ID if successful, or a ‘-1’ if an error has occurred. 

ERROR 
sp_txrx_id() will fail if: 

- The SCRAMNet registers are not mapped. 
- This routine is called using a SCRAMNet Classic Board. 
 



INTERFACE ROUTINES 

 Copyright 2000 5-90 NT DLL REFERENCE GUIDE 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GLOSSARY 

 
 
 
 
 



 

 

 
 
 
 



GLOSSARY 

 Copyright 1999 GLOSSARY-1 NT DLL REFERENCE GUIDE 
 

 
byte-------------------------------------------------------- 8 bits. 
CSR ------------------------------------------------------- Control/Status Register. 
FIFO ------------------------------------------------------ First-In, First-Out data buffer. 
Kbytes ---------------------------------------------------- 1024 bytes. 
LAN------------------------------------------------------- Local Area Network. 
longword ------------------------------------------------- 32-bit or 4-byte word. 
LSB ------------------------------------------------------- Least Significant Byte or Bit. 
LSHLW -------------------------------------------------- Least Significant Half of a Longword. 
LSP-------------------------------------------------------- Least Significant Portion. 
MSB ------------------------------------------------------ Most Significant Byte or Bit. 
MSHLW ------------------------------------------------- Most Significant Half of a Longword. 
MSP------------------------------------------------------- Most Significant Portion. 
NETWORK --------------------------------------------- A means of serial communications among otherwise 

unrelated processors. 
NODE ---------------------------------------------------- A SCRAMNet board which is the point of interface 

between the host processor and the network. 
NODE ID ------------------------------------------------ Network identification number of a given SCRAMNet 

node (0-255). 
ns ---------------------------------------------------------- Nanosecond. 
OS --------------------------------------------------------- Operating System. 
I/O PAGE------------------------------------------------ Block of address space which contains the CSRs for the 

processor and interface devices. 
SCRAMNet --------------------------------------------- Shared Common Random Access Memory Network. 
Platinum-------------------------------------------------- Multiple messages with error correction. 
Plus-------------------------------------------------------- Message size up to 1024 bytes. 
word------------------------------------------------------- 16-bit or 2-byte word. 

 
 



GLOSSARY 

 Copyright 1999 GLOSSARY-2 NT DLL REFERENCE GUIDE 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank 
 
 


	INTRODUCTION
	How To Use This Manual
	Purpose
	Scope
	Style Conventions

	Related Documentation
	Quality Assurance
	Technical Support
	Ordering Process

	PRODUCT OVERVIEW
	Overview
	Organization
	Configuration Routines
	Data Flow Control Routines
	Interrupt Routines
	Memory Access Routines
	DMA Routines
	General Routines

	Related Documentation

	ACCESSING SCRAMNET HARDWARE
	Mapping SCRAMNet to the Host System
	Unique Physical Interfaces
	Mapping SCRAMNet Hardware Registers
	Mapping SCRAMNet Memory
	Mapping Multiple SCRAMNet devices

	Accessing SCRAMNet Registers from the Host System
	Physical Address Space Requirements
	CSR Definition

	Accessing SCRAMNet Memory from the Host System
	Array Style Access
	Function Oriented Memory Access

	Accessing the SCRAMNet Auxiliary Control Ram (ACR)
	Host Platform Byte-Ordering Considerations
	Windows NT Programming

	INTERRUPTS
	Overview
	SCRAMNet Hardware Interrupts
	SCRAMNet Network Interrupt Messages
	Selected Interrupts
	External Triggers

	Forced Interrupts
	Interrupts on Errors

	INTERFACE ROUTINES
	Description
	Organization and Format
	Configuration Routines
	get_scr_node_id() - Get SCRAMNet Node ID
	get_scr_phy_csr_addr() - Get SCRAMNet CSR Address
	get_scr_phy_mem_addr() - Get SCRAMNet Memory Address
	get_scr_time_out() - Get Network Time-out
	get_scr_user_mem_size() - Get Application Memory Size
	scr_acr_read() - READ ACR location
	scr_acr_write() - WRITE ACR location
	scr_brd_select() - Change SCRAMNet Board (Multiple Board Support Only)
	scr_board_status() - Display Board Status
	scr_mem_mm() - Map Memory
	scr_probe_mm() - Probe
	scr_reg_mm() - Map Registers
	scr_reset_mm() - Reset FIFOs
	sp_cfg_read() - READ SCRAMNet Configuration File
	sp_plus_find() - Find Board Type
	sp_scram_init() - Initialize SCRAMNet Mapping
	sw_cfg_fill() - Fills Values Defined in SCRAM_CFG Data Structure
	sw_get_int() - Get NT Interrupt Number
	sw_int_connect() - Initialize NT Interrupts
	sw_int_disconnect() - Terminate NT Interrupts
	sw_mem_addr() - READ SCRAMNet Memory Address
	sw_net_to() - READ Network Time-out
	sw_reg_addr() - READ CSR Address
	sw_set_size() - Set NT Memory Size
	sw_set_int() - Set NT Interrupt Number
	sw_user_size() - READ NT Memory Size

	Data Flow Control Routines
	GetScrTransactionType() - Get Byte Swapping Mode
	SetScrTransactionType() - Alter Byte-Access Order
	scr_dfltr_mm() - Set Data Filter
	scr_lnk_mm() - Link to Network
	scr_wml_mm() - Write-Me-Last
	sp_gtm_mm() - Return current transaction mode (PCI/PMC Only)
	sp_stm_mm() - Set transaction mode (PCI/PMC Only)

	Interrupt Routines
	scr_acr_mm() - ACR Enable
	scr_int_mm() - Set Interrupt Mode

	Memory Access Routines
	get_base_mem() - Get Memory Pointer
	ReadSCRByte() - READ Byte of SCRAMNet Memory
	ReadSCRLong() - READ Longword of SCRAMNet Memory
	ReadSCRWord() - READ Word of SCRAMNet Memory
	WriteSCRByte() - WRITE Byte to SCRAMNet Memory
	WriteSCRLong() - WRITE Longword to SCRAMNet Memory
	WriteSCRWord() - WRITE Word to SCRAMNet Memory

	DMA Routines
	Overview
	scr_dma_read() - DMA READ from SCRAMNet Memory (PCI Only)
	scr_dma_write() - DMA WRITE into SCRAMNet Memory (PCI Only)

	General Routines
	scr_csr_read() - READ Registers
	scr_csr_write() - WRITE Registers
	scr_error_mm() - Network Error Display
	scr_fifo_mm() - Reset FIFOs/READ Status
	scr_fswin_mm() - Check for Fiber Optic Switch
	scr_id_mm() - READ Node Identification
	scr_load_mm() - READ File to Load ACR / RAM
	scr_mclr_mm() - Clear ACR / RAM
	scr_read_int_fifo() - READ Interrupt FIFO CSRs
	scr_rw_mm() - READ / WRITE / Modify Registers
	scr_save_mm() - Save ACR or RAM Contents to File
	scr_smem_mm() - Set ACR / RAM to Pattern
	sp_bist_rd() - READ BIST Data
	sp_mem_size() - Get Hardware Memory Size
	sp_msg_life() - Pre-Age Network Messages
	sp_net_to() - Set Network Time-out Value
	sp_protocol() - Set Network Protocol
	sp_rx_id() - Set Receive ID
	sp_set_cntr() - Set General Purpose Counter Mode
	sp_set_sm_addr() - Set Physical Memory Address
	sp_set_vp() - Set Virtual Page Number
	sp_txrx_id() - Set Transmit / Receive Node ID



